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Abstract

This paper proposes residual-based tests for cointegration in three-regime threshold autore-
gressive (TAR) models. We propose Wald-type and t-type tests that have the null hypothesis of
no cointegration and the alternative of cointegration with three-regime TAR adjustment, and also
derive the asymptotic distributions. Monte Carlo simulations show that the proposed tests per-
form better than the Engle-Granger cointegration test and the cointegration test in a two-regime
TAR model introduced by Enders and Siklos (2001), under cointegration with three-regime TAR
adjustment, particularly when the threshold and sample size increase. When we apply these tests
to the money demand of the U.S., the proposed tests reject the null of no cointegration whereas

other tests do not.
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1 Introduction

Cointegration tests, which are important for investigating equilibrium relationship among
economic variables, have already been used as standard tools for time series analysis.
While these tests, including those in Engle and Granger (1987) and Johansen (1991),
have been standard tests, they assume linear or constant adjustment toward equilibrium.
Linear adjustment toward long-run equilibrium implies that the equilibrium error is con-
tinuously adjusted in all periods. However, the presence of transaction and trade costs
causes discontinuous adjustment toward equilibrium (e.g., Balke and Fomby, 1997). Such
adjustment is often modeled by the three-regime threshold autoregressive (TAR) process
that has a unit root process in the middle regime but a stationary AR process in the outer
regimes. Accordingly, the use of three-regime TAR models is valid in order to accurately
analyze economic systems. In fact, the three-regime TAR model has been popularly used
in economic applications, including those of purchasing power parity (Taylor, 2001), the
term structure of interest rates (Clements and Galvaro, 2003), and the law of one price
(Lo and Zivot, 2001).

Bec, Ben Salem, and Carrasco (2004), Park and Shintani (2005), Kapetanios and Snell
(2006), Seo (2008), and Bec, Guay, and Guerre (2008) have recently developed unit root
tests, i.e., univariate cointegration tests with known cointegrating parameters, in three-
regime TAR models?). This is because, as discussed in Pippenger and Gorening (1993)
and Taylor (2001), standard unit root tests have low power against three-regime TAR
processes. Despite these significant studies, when applied researchers test for three-regime
TAR cointegration with unknown cointegrating parameters, they employ a two-step pro-
cedure. The first step confirms the presence of cointegration relationship among variables
using standard tests. If the cointegration relationship is obtained, the second step uses
linearity tests to ascertain whether a threshold behavior exists. However, this procedure
does not possess sufficient power against threshold cointegration because of the low power

of standard cointegration tests under three-regime TAR cointegration similar to the stan-



dard unit root tests (e.g., Pippenger and Gorening, 2001). Since it is possible that the
low power of standard cointegration tests leads to unreliable results, a direct test that has
both the null hypothesis of no cointegration and the alternative hypothesis of cointegration
with three-regime TAR adjustment is required.

This paper proposes residual-based tests for cointegration in three-regime TAR mod-
els. Although recent studies, including those of Enders and Siklos (2001), Hansen and Seo
(2002), and Kapetanios, Shin, and Snell (2006), have also developed cointegration tests
in nonlinear frameworks, residual-based tests for the null hypothesis of no cointegration
against the alternative hypothesis of cointegration with three-regime TAR adjustment
have not been established yet?. Seo (2006) developed cointegration tests based on the
three-regime TAR vector error correction model (VECM) with a known cointegrating vec-
tor. We use the residual-based approach because this approach not only makes it possible
to estimate the cointegrating vector but also is simple and convenient for practitioners.
We propose Wald-type and t-type tests and derive the asymptotic distributions. Unlike
the limit distributions in Kapetanios and Shin (2006) and Seo (2006, 2008), our approach,
in particular, does not degenerate with respect to the threshold parameters in the limit
because we appropriately specify the parameter space of the thresholds. The point ac-
curately shown by Park and Shintani (2005) is important in the case of testing for both
cointegration and linearity. The proposed tests do not require bootstrap to calculate the
critical values and improve over-rejection and are as convenient and practical for applied
researchers as are standard cointegration tests.

Monte Carlo simulations demonstrate that under cointegration with three-regime TAR
adjustment, the proposed tests perform better than the Engle-Granger cointegration test
and the cointegration test in a two-regime TAR model introduced by Enders and Siklos
(2001), particularly when the threshold and sample size increase. To substantiate the
usefulness of our tests for empirical applications, we apply some tests to the money demand
of the U.S. and find that only the proposed test rejects the null of no cointegration whereas
other tests do not. This implies that the money demand of the U.S. has three-regime TAR



adjustment toward equilibrium. Thus, Monte Carlo simulations and applications clearly
prove the advantages of the proposed tests.

The organization of this paper is as follows. Section 2 presents the test statistics and
asymptotic distributions. Section 3 investigates the size and power of the tests introduced
in Section 2, by using Monte Carlo simulations. In Section 4, the empirical applications
in U.S. money demand are presented. Finally, Section 5 summarizes the paper. Proofs of

theorems are gathered in the appendix.

2 Testing for cointegration in three-regime TAR models
2.1 Test statistics
As an assumption of the tests for threshold cointegration, let y; and x| denote observable

I(1) variables, where y; is a scalar and x; = (214, , &)’ 18 an (m X 1) vector. The

long-run equilibrium relationship is given by
yt:/BIXt+uta t:172,"'7T7 (1)

where ' = (B1,...,0n) are estimated parameters and u; is the equilibrium error. wu;

follows the three-regime TAR process:

drug—1 +er w1 <X\
Ut = § ug—1 + €4 if A1 <upe1 < g, (2)

Poup—1 +ep if w1 > Ao

where e; is a zero mean error, A\; and Ao are thresholds, and we assume Ay > )\13). The
existence of the long-run equilibrium relationship involves the stationarity of u;. The
stationarity conditions of (2) require that —1 < ¢1 < 1 and —1 < ¢ < 1¥. For (2), while
ut has a unit root process in the range of Ay < uz—1 < Ao and does not revert to long-run
equilibrium, i.e., 0, u; reverts toward 0 if uz—1 < A\; or uz—1 > 9. u; modeled by (2) is

related to various economic phenomena where relatively small deviations from long-run



equilibrium do not adjust the equilibrium error, while relatively large deviations do. Model
(2) includes various restricted models. The Engle-Granger test is obtained by imposing
¢1 = ¢2 and Ay = Ay = 0. The two-regime threshold cointegration test introduced by
Enders and Siklos (2001) is obtained by imposing A\; = Ay = 0. To test for two-regime
threshold cointegration, Enders and Siklos (2001) proposed an F' statistic.

To test for cointegration in (1) and (2), we consider the following regression model
using the residual expressed by 4, = y — 3'x¢:

p
Aty = prig—11{t—1 < M1} + patie—11{ls—1 > A2} + Z%Aﬁt—j + €, (3)
=1

where €, is a stationary error with zero mean; 1{-} is the indicator function such that
1{-} is 1 if {-} is true and 0, otherwise®. 1{@;_1 < \;} and 1{@;_; > A2} are orthogonal
to each other. The null hypothesis of no cointegration and the alternative hypothesis of

threshold cointegration for (3) are

H(]:plngzo, H1:,01<0,p2<0. (4)
Denoting a = (a1, ..., ap)" and Ay, = (Ady—1, ..., Ads—p), (3) is rewritten as

where hy = (tg—11{t—1 < M1}, Ge—11{0—1 > Ao}, A} p) and 0 = (p1, p2,a’).

We first consider a fixed A = (A1, A2). Let 6 be the OLS estimator of 0, & = Aty — h;é,
and 62 = Zle € /(T —2 —p). When A = (A1, \2) is given, the Wald statistic required to
test for (4) is given by

Wr(\) = AQ,O[ <thh’) R’]_l,ﬁ, (6)

where p = (p1,p2)" is the OLS estimator of p and R is the 2 x (p + 2) matrix such
that RA = p. For an unknown A = (A, \2), we compute (6) for each possible threshold

and take the largest value across all possible thresholds. Then, the test statistic using a



supremum-type statistic is defined as
)\seufT Wr(A) = )\e[)\,iir,))\,,mw} Wr(N), (7)
where A7 is a random sequence of the parameter space of thresholds given by the functions
of (i1, ,0r). In order to utilize the sup statistic, it is required that A\ € [Amin, Amaz]-
First, we arrange the values of 4; in the ascending order, i.e., ) < G@) < ... < Ur7);
second, we select, for example, Amin = U(57/100) aNd Amaz = U([957/100]), Where [[] is
the integer part. Furthermore, when assuming that 0.1 < P(A\ < 4 < A2) < 0.9, this
selection guarantees the existence of at least 10% of the observations for the inside and
outside regimes. In this assumption, the threshold A; includes equally spaced 100 points
between the 5% and 45% quantiles of the arranged values, and the upper threshold Ao
includes equally spaced 100 points between the 55% and 95% quantiles. Although the
selections of Ay and Apge are rather arbitrary, it is important to guarantee sufficient
observations to identify the regression parameters. When the cointegration relationship
has a constant term, the demeaned residual 4; = y, — o — B’ x; is employed. When the
cointegration relationship has a constant and trend term, the demeaned and detrended
residual @y = yy — 50 — Slt — B' x; is employed.
It should be noted that the Wald statistic cannot clarify the difference between H;p of

(4) and the intermediate case of the threshold no cointegration
Hy:p1=0, po<0 or p1 <0, po=0 (8)

because the Wald statistic increases even in the case of Hs. For a two-regime TAR model,
Enders and Siklos (2001) and Caner and Hansen (2001) pointed out the problem and
introduced a t-statistic. In order to accurately distinguish between Hy, Hy, and Ho under
three-regime TAR cointegration, we propose a t-statistic®. Clearly, threshold cointegra-
tion requires p; < 0 and pa < 0. This implies that the condition of threshold cointegration
is satisfied if the largest of the individual t-statistic is significant. For example, when

the t-statistics of p; and ps are —2.5 and —1.7, respectively, investigating whether the



t-statistic of po is significant will be sufficient for the condition of threshold cointegration.

For a fixed A = (A1, A2), we denote the largest t-statistic between p; and py as

tT()\)maX = Inax[tl, tQ], (9)

where ¢ and ty are t-statistics of p; and pa, respectively. For an unknown A = (A1, A2),

we compute t7(A)max for each possible threshold and take the smallest value across all

possible thresholds. Then, the test statistic using an infimum-type statistic is given by
inf tp(A = inf tr (A . 10
AeAr T( )max )\G[)\mm,)\maw} T( )max ( )

We also introduce the BAND-TAR model given by

p
Al = (,u,l + p1’llt_1)1{ﬁt_1 < )\1} + (,uz + prLt_l)l{ﬂt_l > /\2} + Z OéjAﬁt_j + €. (11)
j=1

The main difference between (3) and (11) is the existence of each intercept parameter in
the outer regimes. Equation (11) has a regime specific mean, but (3) does not. For (11),
the equilibrium error adjusts to the edge of the band [A1, A2]. Unlike the linear model, the
intercept parameters in (11) contribute to the persistence of the process. The BAND-TAR
model (11) is motivated by situations such that a policy intervention attempts to control
an equilibrium error within a target band rather than toward an equilibrium point (zero)

for (3). The null hypothesis and the alternative hypothesis for (11) are”
H(]:pl:pQ:O, H1:p1<0,p2<0. (12)

(11) is rewritten as
Aty = g10p + &, (13)
where g, = (M{a—1 < M}, @1 1{a—1 < M}, {1 > Ao}, @1 {1 > X}, Ady_ )

and O0p = (u1, p1, 2, p2, ). For a fixed A = (A1, \2), the Wald statistic to test for (12) is

WEO) = = [RB ( 5 gtgg> _IRSB} 5 (14)



where 6% = Zthl € /(T — 4 — p), & are the residuals obtained from (11), and Rp is the
2 x (p+4) matrix such that Rpfp = p. For an unknown X = (A1, A), the test statistic is
defined as

sup WE(\) = sup WEWN), (15)
AEAT XeAminsAmas]

where A is selected in a manner that is similar to (7). The test statistic using the t-type

statistic such as (10) is given by

inf t2(\)max inf 2\ max 16
)\lenAT 7 (M)ma /\e[A,,jf,l“Anm} 7 (M) max; (16)

where t2(N)max = max[tP, t8]; tP and t§ are t-statistics of p; and pg in (11).
2.2 Asymptotic distribution

To derive the asymptotic distribution, we denote an (n x 1) vector of I(1) variables as

zt = (yt,x})", where y; is a scalar and x; is an m(=n — 1) vector. z is generated by
2t = z—1 + &, (17)

where & is assumed to be a stationary ARMA process with zero mean and a finite variance

matrix. We make the following assumptions.

Assumption 1. (a) & = 372 Cjur—j, where Co = I, 3222 j[|Cj| < 00, v ~1.i.d.(0,30)
with > > 0, E|v|” < oo for some r > 4, and I,, is the (n x n) identity matrix. (b) zp is a

random vector with ||zg]| < oco.

From Assumption 1, T7-1/2 zgﬂl} & weakly converges to (n x 1) vector Brownian mo-
tion [0,1] with covariance matrix . We denote (n X 1)-vector Brownian motion as
B(r) = (By(r),Bz(r)"), where B(r) is (m x 1)-vector Brownian motion. Covariance

matrix € is defined as

/

w w
o= 12, (18)

war a9



where we assume Qg > 0. € is decomposed as Q = L'L. L is given by

11 0
ly1 Lo

L= , (19)

where 017 = (w11 — wé192—21w21)1/27 ly1 = Q Y2091, and Loy = 9;42 From (19), we have
B(r) = L'W(r), where W(r) = (Wy(r), Wz(r)")" is (n x 1)-vector standard Brownian
motion.

When we set 77 = (1, —/’)" in regression (3), it follows that

!/

i= (L= S (12 S xixp) )

1 1 1Y (20)
= (17 _(fo ByBa/c fo B.B;)~ ) =71.
Using Lemma 2.2 of Phillips and Ouliaris (1990), it can be shown that
T4, = n' B(r)
(21)

= fllk/W(T) = 511W*(T),

where k = (1, —(Jrw,we fi) meg)-l)/ and W*(r) = Wy (r)— [} W, W.( [ W, W)~ W, (r).
In addition, Aty is denoted as Aty = 7'& = n'dB(r). Since & is a stationary ARMA
process under Assumption 1, A4y is also a stationary ARMA process. We represent it as

€ =) ;29 DjAt_j = D(L)Aty, where L is the lag operator.

For (3), the threshold parameter A = (A1, A\2) has an identification problem: it is not
identified under the null hypothesis of no cointegration, but it is identified only under the
alternative hypothesis of cointegration with three-regime TAR adjustment. The problem
wherein a nuisance parameter is identified only under the alternative hypothesis is known
as the Davies problem. Davies (1987), Andrews and Ploberger (1994), and Hansen (1996)
introduced approaches to overcome the problem. It should be noted that the transition
variable 4;_1 behaves differently under the null and alternative hypotheses. ;1 explodes
under Hg, but not under H;. This implies that it is important to select an appropriate

parameter space of thresholds in order to derive correct asymptotic distributions. If u; is



stationary under both Hy and H;, we can deal with similar parameter spaces of thresholds
in the limit. However, the test that has the null hypothesis of no cointegration and the
alternative hypothesis of cointegration with three-regime TAR adjustment is not such a
case.

We specify the indicator function under the null hypothesis as
T <T7 Y20} and 1{T Y201 > T Y2X} with A= (A, X2) € Ap (22)
and under the alternative hypothesis as
{1 <A1} and 1{G;—1 > Ao} with A= (A1, A2) € A, (23)

where Ar is a random sequence of the parameter space of thresholds given by functions of
(G1,- -+ ,0r). Equations (22) and (23) have normalized and unnormalized sets of thresh-
old parameters under Hy and Hj, respectively. The setting is important for deriving the
asymptotic distribution of the test statistics. We follow Park and Shintani (2005) and

make the following assumption.
Assumption 2. Ay = A, where A is a compact subset of the real line.

Assumption 2 implies that limit parameter space A is a random subset of the real line and
makes it possible to allow the presence of the middle regime under the null hypothesis.
In other words, the probability of belonging to the middle regime with A\; < 4; < Ag is
positive at all times, even when the sample size increases. This probability is expressed as
P\ <@y < Xo) = P(T7V2N < TV 20, <T71/2)y)
= P(\ir <1/ B(r) < Aar) (24)
= P(A\ < W(r)* < Xg) >0,
where (A7, Aop) = (T_l/Q)\l,T_l/2)\2) and (5\1, 5\2) = (Eff)xlT,Efll)\gT), respectively.
Statistics derived from this assumption do not degenerate with respect to the thresh-

old parameters in the limit. In contrast, if Assumption 2 does not hold, the probability

10



of being in the middle regime with A; < 4; < Ay becomes 0 when the sample size grows.

Thus,
P\ <y < Xo) = P(T7V2N < T7120, <T71/2)y) — 0.

The difference in the probability of being in the middle regime is crucial for the asymptotic
distribution, and as a result, it appears to cause the difference in the size and power
performances.

The following theorem is required to derive the asymptotic distributions of the test

statistics.

Theorem 1. If Assumptions 1 and 2 and Hy hold, then we obtain
T 1 ~
(la) TS e 1 1{a 1 < Mber = D(1)e§1/ LW < AW di,
t=1 0
T 1 _
1) T2 a1 < M} = 6%1/ W™ < A\ JW*2,
t=1 0

T 1
(1e) T i 1{dy1 > do}er = D(1)£$1/ {W* > X }W*dWw™,
t=1 0

T 1
(d) T2 a7 iy > Ao} = e%l/ W™ > M W*2,
t=1 0
where W* is a shorthand notation for W*(r) and D(1) = > 3" D;.

If the parameter space of thresholds is a fixed compact set, as assumed by Kapetanios
and Shin (2006) and Seo (2006, 2008), the threshold parameters degenerate under a unit
root process or no cointegration. Accordingly, the indicator functions from (1la) to (1d) in
Theorem 1 are replaced by 1{W* < 0} or 1{IWW* > 0}. As demonstrated by Seo (2006) and
Kapetanios and Shin (2006), the use of sup-type tests in the parameter space of thresholds

with a fixed compact set causes severe over-rejection under Hy, and as a result, the sup-

11



type tests using asymptotic critical values will lead to unreliable results®. However, the
test statistic proposed in the paper has a better size performance even when we employ
asymptotic critical values; this is because we appropriately deal with the parameter space
of thresholds. The following theorems present the asymptotic distributions of the test

statistics.

Theorem 2. If Assumptions 1 and 2 and p = o(T3) hold, statistics (7) and (10)

have the following asymptotic distributions.

(2a) sup Wr(X) = sup W(\),
AEAT AEA

(20) Alen/\fr t7 (AN max = /{rel/f\t(/\)max'

W(A) and t(N)max are defined as follows:

(fol W™ < Xl}W*dW*>2 (fol W™ > S\Q}W*dW*)Z
(K'k) Jo L{W* < A w2 (K'k) fof L{W* > Ao} W2

and

t(A)max = max [ fol W™ < MW fol W™ > do}WdW™ ]

(K% [ 1w < Apwe2) 2 (g [L 1w > Xywe2) 2
Under the alternative hypothesis that has cointegration with three-regime TAR adjustment,
(2a) and (2b) diverge to infinity and minus infinity, respectively, as T — oo.

The test statistics of BAND-TAR model (11) have the following asymptotic distribu-

tions.

Theorem 3. If Assumptions 1 and 2 and p = o(T'/3) hold, statistics (15) and (16)

have the following asymptotic distributions.

12



(3a) sup WE(N) = sup WE(N),
ANEAT AEA

b inf 2 (\)max = inf £2(\) max-
@), Wmec = L )

WEB(N) and tB(N)max are defined as follows:
(fo oy nweaw= = i wn IldW*>2
FE{ fy I Jy W*2h = (Jy W*2L)?)
(fo & Jy Weaw™ - [f WL I2dW*>2
k,k{ fol I fol W2y — (fol W*Qb)Q}

WE\) =

and

J3 I [y LW AW — [ W* Iy [ LdW*
(RE{ Jo I fy 2L = (Jy we2L)2))
[V I [} LW*AW* — [ W*Iy [} LdW*
(k/k{ fol I fol W2l — (fo1 W*QIQ)Z})MQ]

where I} = 1{W* < A} and I, = 1{W* > X\y}. Under the alternative hypothesis that has

tB()\)maX = max [

cointegration with BAND-TAR adjustment, (3a) and (3b) diverge to infinity and minus

infinity, respectively, as T — oo.

For theorems 2 and 3, when the first regression has a constant term, W* is replaced by

9). Similarly, when the first regression has a constant and

the demeaned Brownian motion
trend, W* is replaced by the demeaned and detrended Brownian motion.

It should be noted that the critical values for the test statistics depend on Apin, Amaz,
and the number of regressors. However, since bootstrap methods are not necessary to
calculate the critical values, the test is convenient and practical for applied researchers.

Tables 1 and 2 show critical values of the tests from m = 1 to m = 5. The asymptotic

critical values approximated by T = 1,000 are obtained from 10,000 replications. We
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present three models: Model 0 contains no deterministic terms; Model 1 contains an
intercept in the first regression; Model 2 contains both intercept and trend in the first
regression. We calculate these critical values for three types of grid space (Amin, Amaz) =
Gp(tpy), dy(1—yy7)) With 0 < v < 0.5: G1 with v = 0.05, G2 with v = 0.10, and G3
with v = 0.15. Each model searches from the 1007% to the 50(1 — 2v)% quantiles of
the arranged sample (a(l), e ,ﬂ(T)) to determine the lower threshold A, and from the
50(1 + 27v)% to the 100(1 — v)% quantiles to determine the upper threshold Ay such that
at least (100 x 2v)% of the sample is in the middle regime. For each model, the threshold
A1 includes equally spaced 100 points between the 1007% and 50(1 — 2v)% quantiles of the
arranged values, and the upper threshold A9 includes equally spaced 100 points between
the 50(1+27)% and 100(1 —~)% quantiles. Although the selection of + is rather arbitrary,
it is more important that it guarantees sufficient observations to identify the regression

parameters.

3 Monte Carlo simulations

In this section, the size and power properties of the tests introduced in Section 2 are
examined and compared to the properties of the tests in Engle and Granger (1987) and
Enders and Siklos (2001). The nominal size of the test is 0.05, and we examine the sample
sizes of T' = 100, 200, and 400. For all experiments, 100 initial observations are discarded
in order to avoid the effect of the initial conditions (the initial value is set to zero); that
is, data with T'4 100 are generated. The number of simulations is 10,000. In this section,
we denote each test as follows: the t-type test of Engle and Granger (1987) as EG-t; the
® test in a two-regime TAR model of Enders and Siklos (2001) as ES-®; (7) with the grid
space G1 as W1 and G3 as W3; (10) with the grid space G1 as t1 and G3 as t3; (15) with
the grid space G1 as W51 and G3 as W53; and (16) with the grid space G1 as t®1 and
G3 as tP3. Note that the differences between G1 and G3 depend on the manner in which

the grids for A\; and Ay are selected. It is important to investigate whether the size and
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power properties depend on the grid space of the thresholds. We use the demeaned data

U = Y — 50 — ﬁlxlt, where 30 and Bl are the OLS estimators.
3.1 Size

We generate the following data in order to examine the size performance:

Yt = 00 + Srxr + e, (25)

Aup = ey, (26)

er = per—1 + €, (27)

Axy = €9y, (28)

) Lisax (o ° , (29)
€9t 0 O'%

where §p = 1 and 1 = 2, and we consider ¢ = (0.5,0,—0.5), 02 = 1, and o3 = (1,4).
For all tests, we use the regression with an augmentation term Adi;_1, except for ¢ = 0.
A lag order Aty—1 is added to the models when ¢ # 0, whereas no lag order is added
when ¢ = 0. Table 3 reports the rejection frequencies of the tests. The sizes of EG-t,
ES-®, W1, t1, W3, and 3 are close to the nominal level of 5% and exhibit reasonable
and acceptable size properties when ¢ = 0 and o5 = 1, regardless of the sample size. The
tests in BAND-TAR model slightly under-reject the null hypothesis in small samples. It
should be noted that these tests require the estimation of additional parameters. This
indicates that the estimation of additional parameters leads to under-rejection in a small
sample. Although these tests tend to slightly under-reject the null hypothesis in a small
sample, the under-rejection appears to become less frequent as the sample size increases.
The use of the size-adjusted critical values based on a finite sample may be recommended
for a strict analysis.

All the tests for ¢ = 0 and a% = 4 have properties that are similar to those when
¢ = 0 and O‘% = 1. The size does not depend on the degree of the variance of ey;. The

EG-t and ES-® tests have an appropriate size even in the presence of a serially correlated
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error. The proposed tests slightly under-reject or over-reject the null hypothesis in the
presence of a serially correlated error, whereas the under-rejections appear to become
less frequent when the sample sizes are large. In addition, the under- or over-rejections
of W3 are less significant than those of W1. Although sup-type tests using asymptotic
critical values as demonstrated by Kapetanios and Shin (2006) and Seo (2006) exhibit
severe over-rejections even in a relatively large sample, our proposed statistics have more
reasonable and acceptable sizes even in a small sample and have no severe over-rejections.
It is noteworthy that our proposed tests do not degenerate with respect to the threshold
parameters under no cointegration, and the properties allow a positive probability of being
in the middle regime in the limit. The results indicate that it is necessary to (a) have the
appropriate threshold parameter space that does not degenerate under no cointegration
and (b) guarantee the probability of being in the middle regime in the limit, in order to

acquire a good size performance in a small sample when we use asymptotic critical values.

3.2 Power

Next, we focus on the power comparison under threshold cointegration. To avoid the
effects of slight under-rejection, as reported in Table 3, and accurately examine the power
performance, we use size-adjusted critical values based on finite samples!?). The data to

examine the power is generated as follows:

Yt = 00 + Prae + e, (30)
Aug = prug—11yy, <Ay + p2ur—11gy,_ >xy + €1t (31)
Al‘t = €9¢, (32)
€1t 1 0
~iidN |0 : (33)
€2 01

where 0o = 1, f1 = 2, p1 = p2 = —0.05, and A = (0,2,4,8). Table 4 presents the results
of power performance and the percentage of data in the middle regime. The increase in

A expands the no-adjustment region toward equilibrium. Although the power of the tests
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increases with the increase in the sample size, a general finding obtained from Table 4
is that the powers of all the tests change drastically with an increase in A, i.e., with an
increase in the percentage of the middle regime. This implies that the threshold has a
clear impact on the power of each test, particularly as the threshold increases.

When A = 0, (31) reduces to an AR(1) model. The EG-t¢ test performs best for this
alternative since this alternative is designed for this test. In addition, the EG-t test also
has a better performance even when the alternative is threshold cointegration with A\ = 2.
It is noteworthy that in the case where the EG-t test performs better than the tests based
on three-regime TAR models, the percentage of the middle regime is small; for example,
it is approximately 43% for A = 2. However, the power of the EG-t test decreases rapidly
as the no-adjustment region expands and the sample size increases. In other words, the
larger the percentage of the middle regime, the more difficult it is for the EG-t test to
detect the reversion toward long-run equilibrium.

However, the decrease in the powers of the proposed tests is clearly different from that
of the EG-t test. When the threshold increases, the power of the sup tests is superior to
that of the EG-t test, and the decrease in the powers of the Wald-type tests are much
slower than that of the EG-t test, which ignores the threshold behavior \. We notice that
the middle regime % employed by these statistics slowly approaches the true value when
the sample size increases. The ES-® test, which is designed for two-regime TAR models,
also performs better than the EG-t test when the threshold and sample size increase. For
example, from Table 4 with A = 8 and T" = 400, we observe that the powers of EG-t, ES-®,
W1, W3, WP1, and W83 are 0.156, 0.172, 0.256, 0.224, 0.183, and 0.180, respectively.
A threshold does not have a clear impact on the powers of Wald-type tests as compared
with the EG-t and ES-® tests. The results show that the Wald-type tests perform better
than EG-t and ES-® when the threshold and sample size increase.

A comparison between Wald-type and t-type tests show that Wald-type tests are domi-
nant to t-type tests when the threshold and sample size increase. Practitioners are advised

to use the Wald-type tests if economic theories predict threshold cointegration and the
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EG-t test cannot reject the null hypothesis of no cointegration. The t-type tests would
be used in a supplementary test to ascertain the robustness of stationarity. In addition,
W3 and t3 outperform W1 and t1, respectively, except for A = 8 and T = 400. W1,
which is the statistic with the largest grid space of thresholds, performs poorly under the
three-regime TAR process with a small threshold, whereas it performs better in the case
of an increase in the percentage of the middle regime for a large sample size. The results
imply that the grid space of the threshold parameters influences the power performance
of the tests.

The rejection rates of the BAND-TAR models are significantly low for a small threshold
and/or small samples. It is possible that the estimation of additional parameters and the
test for joint significance lead to a low power in a small threshold and/or small samples. In
fact, W21 and W23 give less rejection rates than do W1 and W3. From the underlying
model, it is expected that the test based on the BAND-TAR model outperforms EG-¢
when the true process is a three-regime TAR process. Contrary to expectation, the test
based on the BAND-TAR model has much lower power than the EG-t test, particularly
when the threshold and sample size are relatively small. The BAND-TAR model may be
useless in uncovering long-run equilibrium as long as the threshold and/or sample size are
small. For example, for A = 2 and T' = 200, the powers of EG-t, ES-®, W1, W3, W#1,
and W53 are 0.194, 0.179, 0.148, 0.166, 0.071, and 0.066, respectively.

Table 5 reports the results for p; = p2 = —0.3. We observe from Tables 4 and 5 that the
no-adjustment region for p; = py = —0.3 is larger than that for p; = py = —0.05. For the
case when A = 4, the three-regime TAR models with p; = po = —0.05 have approximately
68% observations in the middle regime, whereas the three-regime TAR models with p; =
p2 = —0.3 have approximately 90% observations. The power gain of the Wald-type tests
over the EG-t and ES-® tests become more substantial than p; = po = —0.05 when the
threshold and sample size increase. For example, when 7" = 400 and A\ = 8, the powers
of EG-t, ES-®, W1, W3, WF1, and W#3 are 0.292, 0.350, 0.786, 0.541, 0.856, and 0.791,
respectively. The use of the Wald-type tests is considerably more valid than that of the
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EG-t and ES-® tests. It should be noted that WP#1 and W23 also have a high power
superiority for a large threshold. This indicates that the BAND-TAR model performs
much better as the threshold and sample size increase, and the outer regimes are less
persistent.

We also examine power performance under the three-regime TAR process with an
asymmetric adjustment (pi1, p2) = (—0.15,—0.05). It would be more informative to assess
the power for p; # pa because some applications supported asymmetric adjustment (e.g.,
Bec, Ben Salem, and Carrasco, 2004; Kapetanios and Shin, 2006). The test results pre-
sented in Table 6 indicate that all the tests have a higher power than those given in Table
4, but a lower power than those given in Table 5. The percentage of observations in the
middle regime is greater than that in Table 4 but lower than that in Table 5. Thus, the
results in Table 6 indicate performances between Tables 4 and 5.

Table 7 presents power performance under the BAND-TAR model given by

Aup = (1 + prue—1)1qy,_ <—xy + (B2 + p2ut—1)1{y,_ Ay + €, (34)

where 1 = Ap1, o = —Ap2, p1 = p2 = —0.3, and A\ = (2,4, 8). The adjustment speed in
the outer regimes is similar to that of Table 5. A comparison between the results of Tables 5
and 7 provides evidence that the rejection frequencies of the tests are affected by a constant
of each regime. The reason is that BAND-TAR model (34) has a larger persistence than
equilibrium TAR model (31) when both models have the same adjustment speed in outer

1) However, we do not observe much difference between the results of Tables 4

regimes
and 7 because the percentage of observations in the middle regime for Table 7 is similar to
that of Table 4, where the adjustment speed of the outer regime of (31) is p; = pa = —0.05.
Although it is expected that WP1 and W23 designed for the alternative hypothesis of the
BAND-TAR model exhibit the best power among the tests, their power performances are
not markedly different from those of W1 and W3 even for a large threshold. Employing
the BAND-TAR model may not significantly influence the power even if the true process

is a BAND-TAR one.
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4 Applications to the money demand of the U.S.

In this section, we apply the tests introduced in Section 2 to the money demand of the

U.S. We consider the money demand function as follows:

Double-log model: M;/P; = &g + By Y; + BrR: + uy, (35)

Semi-log model:  M;/P; = 6o + By Y: + Brre + uy, (36)

where M;, P;, Y:, Ry, and r; denote nominal money, prices, real income, interest rate in
logarithm, and interest rate in level, respectively. u; denotes the equilibrium error of the
money demand function. For the underlying theoretical backgrounds of the TAR model
in money demand, Milbourne (1987) pointed out that money demand was characterized
by the Buffer-Stock model. This shows that agents in economies do not act to adjust
their money balances when the deviation from equilibrium is within adjustment costs but
they do so when the deviation is relatively large, i.e., over the thresholds. Sarno, Taylor,
and Peel (2003), who proposed the nonlinear error correction model in the presence of
transaction costs, supported the smooth transition adjustment of the money demand of
the U.S. (see also Cuthbertson and Taylor, 1987; Mizen, 1997; Sarno, 1999). Maki and
Kitasaka (2006) provided empirical evidence to prove that the money demand in Japan
is characterized by a two-regime TAR process. These studies provide findings supporting
nonlinear adjustment of money demand.

We use M1 as nominal money, the consumer price index as prices, and the index of
industrial production as real income. These variables are data that are seasonally adjusted.
For the interest rate, we use the three-month Treasury Bill interest rate. The monthly
data obtained from the Federal Reserve Bank of St.Louis consist of 577 periods from
1960:1 to 2008:1. We consider two sample periods -1960:1-2008:1(577 periods) and 1979:10-
2008:1(337 periods)- corresponding to changes in Federal Reserve operating procedures.
The tests have a constant term in the first regression. Although we do not present the

results of the unit root tests of variables, the tests provide evidence of I(1). We determined
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the appropriate lag length for p = 12 and then excluded the insignificant augmentation
terms. Since Enders and Siklos (2001) did not tabulate the critical values of the ® test
for regressors with m = 2, we calculated the values!?).

Table 8 presents the results of cointegration tests. We find clear differences among the
tests. The results of the double-log model for the full sample show that EG-t, ES-®, W1,
W3, and t3 reject the null hypothesis, but the BAND-TAR model does not. This implies
that the equilibrium error is a three-regime TAR model with a small percentage of the
middle regime because Monte Carlo simulations in the previous section demonstrate that
the BAND-TAR model does not perform well when the true process is a three-regime
TAR model with a small percentage of the middle regime. On the other hand, in the
case of the semi-log model, the EG-t and ES-® tests do not reject the null hypothesis of
no cointegration in both the sample periods even at the 10% significance level, whereas
tests based on the three-regime TAR models reject the null hypothesis at the 1% or 5%
significance level and provide strong evidence of a cointegration relationship. Monte Carlo
simulations and empirical results indicate that the equilibrium error of money demand in
the semi-log model is a three-regime TAR process with a large threshold because tests
based on the three-regime TAR models reject the null hypothesis of no cointegration,
whereas the EG-t and ES-® tests fail to reject the null hypothesis. Thus, we obtained
more stable and reliable results for threshold cointegration.

Figures 1 and 2 draw the time path of the residuals for two samples. Both figures
denote a strong tendency to move back toward equilibrium, although the processes appear
to be highly persistent in the sub sample. In order to confirm these findings and the results
of Table 8, we estimate the following model:

P
Aty = prig—11ga,_,<xy + p2ie—11ga,_,>x1 + Z ajAdy—j + €, (37)
j=1
where 4; denotes the demeaned residual such that 4; = M;/P, — 30 — Bth — BRRt or
Uy = My/ Py — 50 - Bth - /31«7“15- We determined the appropriate lag length for p = 12 and

then excluded the insignificant augmentation terms. The threshold parameter A = (A1, A2)
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is estimated by minimizing the sum of the squared residuals over [Amnin, Amaz], Where
Amin and Apnqe are set to 5% and 95% quantiles, respectively, of the ordered sample
Uy < Uy < ... < Uy

From the estimations presented in Table 9, the middle regime for the double-log model
in the full sample is approximately 15%. This would be the reason why EG-t, ES-®, W1,
and W3 in Table 8 rejected the null hypothesis but the tests in the BAND-TAR model
did not. In the case of the semi-log model, we notice that the percentage of the middle
regime for the sub sample is approximately 90%. Furthermore, the adjustment process
toward equilibrium is persistent below the estimated threshold parameter 5\1, whereas
the deviations from the equilibrium are quickly eliminated above the estimated threshold
parameter Xa. We could interpret the results of Tables 8 and 9 from the Monte Carlo
simulations presented in Table 6, where Wald-type tests have a higher power when the
threshold is large, i.e., when the middle regime percentage increases. The reason why
EG-t and ES-® tests fail to reject the null hypothesis of no cointegration for the semi-log
model, as demonstrated in the previous section, is that these tests have a low power when
the equilibrium error is the three-regime TAR process with a relatively large percentage
of observations in the middle regime. These findings strongly support the stability of the
long-run money demand characterized by the three-regime TAR model. Accordingly, the
use of the cointegration test in three-regime TAR models provides a better alternative to
standard cointegration tests in the cases where economic theories indicate three-regime

TAR adjustment.

5 Summary

This paper has proposed residual-based tests for cointegration in three-regime TAR mod-
els. We have proposed the Wald-type and t-type statistics, which are the tests for the
null hypothesis of no cointegration against the alternative of cointegration with the three-

regime TAR adjustment, and derived its asymptotic distributions. Since our approach
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does not degenerate with respect to the threshold parameters in the limit, the proposed
tests using supremum statistics have better size properties and do not require bootstrap
to calculate the critical values and, like standard cointegration tests, are convenient and
practical for applied researchers.

Monte Carlo simulations demonstrated that the proposed tests perform better than
the Engle-Granger cointegration test and the two-regime cointegration test introduced
by Enders and Siklos (2001), under cointegration with three-regime TAR adjustment,
particularly when the threshold and sample size increase. When we applied these tests to
the money demand of the U.S., the proposed tests rejected the null of no cointegration
whereas the other tests did not; that is, by allowing for three-regime TAR adjustment, we
obtained results showing the stability of the money demand function. This implies that
the money demand of the U.S. has three-regime TAR adjustment toward equilibrium. The
results obtained from Monte Carlo simulations and the applications to the money demand
of the U.S. underline the usefulness of the proposed tests for applied investigators in cases

where cointegration tests are used in three-regime TAR frameworks.
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Footnotes

1) Park and Shintani (2005) developed unit root tests in various transitional AR models, including
the three-regime TAR model. Maki (2009) reviewed unit root tests in three-regime TAR models
and investigated the power of these models. Other unit root tests in nonlinear frameworks have
also been proposed by Enders and Siklos (1998), Caner and Hansen (2001), and Kapetanios, Shin,
and Snell (2003). Choi and Moh (2007) investigated the power of some unit root tests in nonlinear

frameworks.

2) Enders and Siklos (2001) proposed cointegration tests in two-regime TAR models. Hansen and
Seo (2002) developed the test in two-regime TAR vector error correction models, and Kapetan-

ios, Shin, and Snell (2006) proposed cointegration tests in smooth transition autoregressive models.

3) If (2) is a three-regime TAR model with a symmetric adjustment, the model under the al-
ternative is —1 < ¢; = ¢ < 1. In addition, a special case of a symmetric three-regime TAR model
is given by u; = @us_11yjy,_,|>a} + €. Since (2) also includes these restricted models, we only

consider general model (2).

4) See Bec et al. (2004) and Kapetanios and Shin (2006) for details on the stationarity condi-

tion of three-regime TAR models.

5) Although it is possible that Ad,_; also follows a TAR process, for the sake of simplicity, we
do not consider this case as in Enders and Siklos (2001). Even if A#,_; is a TAR process, the

asymptotic distribution of the test statistic does not change.

6) It is possible to propose a test that has the null hypothesis of (p1 < 0 and ps = 0) or (p1 = 0,
p2 < 0) and the alternative hypothesis of (p; < 0 and po < 0). However, as pointed out by Seo
(2006), the parameter space for the test is complicated under the null hypothesis. Therefore, we

introduce the test in the present paper.
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7) Although the intercept parameter in the BAND-TAR model also plays a role in determining the
stationarity of u;, we focus on the AR parameters because the stationarity of the AR parameters
is important for general tests for unit root and cointegration. See Balke and Fomby (1997) for the
returning drift model, where the intercept parameter in the BAND-TAR model determines the

existence of cointegration.

8) Seo (2006) proposed a bootstrap method to improve size distortions.

9) If 5\1 = 5\2 =0 or 5\1 = 5\2, the test statistic is found to be similar to the ® statistic by using

an F statistic of Enders and Siklos (2001), although they did not show the asymptotic distribution.

10) Owing to space constraints, we have not tabulated finite size critical values. These are available

with the author and will be provided on request.

11) See also Balke and Fomby (1997) and Lo and Zivot (2001).

12) Critical values of the ES-® test are 6.208, 7.272, and 9.640 at 90%, 95%, and 99%, respectively.
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Appendix
Proof of Theorem 1

From (21), we obtain that T-'/2¢;'a; = W*(r). Given that the function 1{a;_; < A} is

continuous in @;_1, using Lemma A2 of Park and Phillips (2001), we have

Wiy <M} =T V20 20 <T7H203 (A1)
Al
= 1{n'B(r) < \ir} = L{W*(r) < M},

where A\jp = T=1/2)\; and \; = éfllAlT. From ¢, = Z;io Djf;_jn = D(L)¢;n and Lemma 2.1 of
Phillips and Ouliaris (1990), we have

(Tr]
77123 e = D(1)n'B(r), (A.2)

t=1

where D(1) = 3772 D;. (A.1), (A.2), and the continuous mapping theorem (CMT) yield

T T
T iy g 1{dey < Mbe =T 2 Y T2 y1{T 20 2y <T7V2M\}D(L)E

t=1 t=1

1
= D)y / BdB'n1{n'B < \ir} (A.3)
0
1
= D(1)£§1/ {W* < A WHdW™
0
and

T T
T Zﬂ?—ll{ﬂt—l < )\1} =71 Z(T71/222_177)/(Tﬁl/Zzz_177)1{’]’*1/277’%_1 < T*1/2)\1}
t=1 t=1

1
= 77// BB'm1{n'B < \ir}
0
1
= 6?1/ W™ < A\ W2,
0
(A.4)

A similar type of analysis can be applied to the term for 1{d;_1 > Aa}. Therefore, it can be also
shown that
T i ~
71! Zat_ll{ﬂt_l > )\Q}Gt = D(l)é%l/ 1{W* > AQ}W*dW* (A5)
t=1 0
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and

T 1
T2 a7 1{iy > Ao} = @1/ W™ > M\t W2, (A.6)
t=1 0

Proof of Theorem 2

Part of (2a). The statistic W () can be written as

1 .
Wr(A) = 7' (U'QU)p, (A7)
where
’1201{’120 < /\1} ﬂol{’flo > /\2}
’1211{’121 < /\1} ﬂ11{’&1 > /\2}

U =

Up—1H{ar—1 <M} Gp_11{ar_1 > Ao}
and Q, = I — M,(M/,M,)"'M is a T x T idempotent matrix. M,, is the matrix of observations
on A} . Since under Hy with p; = py = 0, p is given by p = (U'Q,U)"'U’'Qye, where

€= (e1, - ,er), (A7) is expressed by
1
Wr(\) = E<-;’QpU(U’QpU)—1U’Qpe. (A.8)

Let U; = (7:6()1{7:6() < )\1}, i ,’LALTfll{fLTfl < )\1})/ and U, = (ﬁol{ﬁ,o > )\2}, s ,’(AI,Tfll{ﬁTfl >

A2}). From the orthogonality between 1{t4;—1 < A1} and 1{d4;—1 > A2}, we can decompose (A.8)

as
-1
U/ Q,U 0 U/ Qe
Wr(\) = (€Q,U1,eQ,Uy) | 7" L
0 UYQ,U, U,Q,e (A.9)
1 _ _
:ﬁ{elQpUl(UllQpUl) 1UI1Q:D€+EIQPU2( /2QpU2) 1U/2Qp€}~

Consider €' Q,U; (U} Q,U;) "' U Q€. It follows from CMT that T-'U{M,, = O, (1), T"'M,M,, =
Op(1), and T~/2M/ e = O,(1). Combining these results and Theorem 1, we have
T7'UQue =T 'Ule — T2 . T7'UM, (T "M, M,) ' T~ /*M/ e

1 ) (A.10)
=T Ule+0,(1) = D(1)63, / H{W* < A\ IW*dW™
0
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and

T7*UQ,U; =T?U U — T - T7'UM,(T'M,M,,) ' T~'M Uy

) i (A.11)
=T?U U +0,(1) = @1/ W™ < A\ W2,
0
Similarly, it can be shown that
1
T7'ULQue = T 'Uhe + 0,(1) = D(1)6%, / VW™ > A\ }WHaW™* (A.12)
0
and
1
T72ULQ, Uy = T 2UY Uy + 0,(1) = 251/ 1{W* > A }W2, (A.13)
0

Next, we consider the variance 2. Note that p1 = O,(T™1), p2 = O,(T71), and (&; — ay) =

O,(T~'/2). Then, using Lemma 2.2 of Phillips and Ouliaris (1990), we obtain

T
2
§2=7"" Z (A’&t - ﬁl’lltfl].{ﬂtfl < )\1} — ﬁgﬂtfll{ﬂtfl > )\2} - Z?:l(@j — Oéj)Aﬁ,t,J)

t=1
T T
=T & +0,(1) =T D(L)*{ &6
t=1 t=1

= D(1)*/Qn = D(1)263, K.
(A.14)

Therefore, by (A.10) — (A.14),
1
Wr(\) = ﬁ{T*e’Ul(T’QU’lUl)*lT’lU’le + T Uy (T2ULUL) 1T ULe} + 0,(1)

1
~ D)2, Kk

~ 2 _ 2
(D(l)e‘f1 S < /\I}W*dW*) (D(1)£§1 S > Ag}W*dW*)
= + -
[ Hwr <A w2 2, [F1{w > X)W+

(f01 W < XI}W*dW*)2 (fol H{W* > Xz}W*dW*)2
(K'k) [, 1{W™ < Ay =2 ) Jwe > a2

(A.15)

We can deduce the required results from the asymptotic distribution of Wy () and Assumption 2.

Under the alternative hypothesis, Wr(A) can be written as
1 1 _
Wr(\) = ﬁp/(U/QpU)p + ﬁe’QpU(U’QpU) lU'Qe. (A.16)
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Note that under the alternative hypothesis, T-'U'Q, U = 0,(1), T~'/2U'Q,e = O,(1), and

62 = 0,(1). We can see that

1 1
Wr(\) = Tﬁp’(T*U’QpU)p + ET’l/Qe’QpU(T’lU’QPU)’1T’1/2U’Qpe
1
=T/ (T7U'QU)p + Oy(1) (A-17)
= OP(T)'

Therefore, Wr () diverges to infinity as T — oo. This also implies that the test statistic diverges

to infinity as T — oo.

Part of (2b). From the proof of part (2a), the statistic t7(\)max can be written as

(A.18)

t7 (M) max = max l P p2 ] .

{62(U1Q,U1)~1}1/2" {62(U5Q, Uy) 1 }1/2
Since p; (i = 1,2) is given by p; = (U;Q,U;) ' U,Que under Hy with p1 = pa = 0, t7(N)max is

expressed as

"Q € U,Q,e€
(e = oo [{&%Uaé?%l)}lﬂ’ {&%Ug?;z?&)}lﬂ] | (A19)
Using from (A.9) to (A.13), we have
K\ = max [ D), [y 1{w* < 5\1}V~V*dW* ’ DB, [y W™ > XQ}VE/*dW*
(D122, ez, [ 1{W= < A w=2)"?" (D)2, ka2, [ 1{w+ > Ap3w=2)/?
. [ Jy LW < A 3wWraw Jy W™ > Ao} Wrdw ]
(k% [ W= < A=) (ke 11w > Aywe2) /2
(A.20)

We can deduce the required results from the asymptotic distribution of ¢7(A)max and Assumption
2. Next, we consider the properties of the test statistic under the alternative hypothesis. Under

the alternative hypothesis, t7(\)max can be written as

P1

tr(A max — ~
7(N) max (52(U,Q,U;) 111/

1
+ = Ull QpE(U/l QpUl) 1/27

P2 Ly / —1/2
G(03Q, Uy 17 T 5 22

29



Then, we have

T1/291

tr(A max — ~
() max {(62(T-1U,Q,U,) 1}1/2

1, _ _
+ ST PUIQue(TTIUIQ, U 2,

T'/2py
{62(T71U5Q,Uz) 1 }1/2

(A.22)

1
+ gT—lﬂU'zQpe(T—lU’zQPUg)—1/2

= maX[Op(Tl/z), Op(Tl/Q)]-

from T-'U1Q,U; = O,(1), T~Y?U} Qe = O,(1), T~'U,LQ, U, = O,(1), T~/2U,Q,e = O,(1),
and 62 = O,(1). Therefore, t7(\)max diverges to minus infinity as 7' — oo. This also implies that

the test statistic diverges to minus infinity under the alternative hypothesis as T — oo.

Proof of Theorem 3
Part of (3a).
Under Hy, p is given by p = (U'S,U)"'U’S,e, where S, = I - N,(N/N,) !N/ is a T x T

idempotent matrix and

1{’&0 < )\1} 1{17,0 > )\2} Aﬂlf

-p
N — 1{’&1 < )\1} 1{17,1 > )\2} Aﬂg_p
=
1{1ALT,1 < /\1} 1{117*,1 > )\2} Aﬂgwip
Similar to (A.9), we can rewrite W2 (\) as
1
WE) = ﬁ{e'spUl(U;spUl )~1ULS, €+ €S, Ux(ULS,Us) " 1ULS el (A.23)
Note that
T7'U|S,e = T 'Ule — T3/ U\ N,(T7'N/N,) "' T~ '/*Ne. (A.24)

Consider (T7'N,N,)~!. Since we obtain 77! 23:1 i1 < M} = fol H{W(r)* < Xl}dr from
Theorem 3.1 of Park and Phillips (2001), it can be shown that
Jyhdr 0 0
T'N)N, = | 0 ['Ldr 0],
0 0 r
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where I} = L{W(r)* < A}, I = L{W(r)* > Ao}, and T = limgp_, T-' 3 E(A

Therefore, we have

(Jo Ludr)™* 0 0
(T7'N,N,) " = 0 () Ldr)™* 0
0 0 r-!
We also have
T3PUIN, = T732(3 dp-11{ie—1 < A1}, 0,3 t—11{dy—1 < M}AGY_ )

= (611 fO W*Il,0,0),

and

TVPNe =T 2(X {1 < MY, 3 1{iu—1 > Aoter, S AGY_er)

=>( gll fO IldW D fll fO [QdW* (@) ( ))/

It follows from Theorem 1, (A.25), (A.26), and (A.27) that
T-'U,Spe = D), [ LW*dW* — DV, [f WL (f) 1)~ [ LdW*
Go{fy L fy LWdW™ — [I W*I, [ [dW*}.
Next, consider UjS,U;. It is easily seen that
T72U}S, Uy = T72U Uy — T-*2UIN, (T 'N/N,)"'T¥/2N/ Uy.
Using (A.25) and (A.26), we obtain
~T732UIN,(TINON,) T T 32N Uy = ([ WHI)2(f) )™
Therefore, we have
T2ULS, Uy = 62, [f WL — 63,(fyy WHL)2([y L)~

= Gi{fy I fy WL = (Jy We1)?)

~p/
(e pAut p)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

Since similar analysis can be applied to €S, U3(U,S,Uy)~1U,S, €, it can also be shown that

T71UYS,e = DO)E [} I fiy LW*dW* — [ WD, [} LdW*}
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and
T-2ULS, Uz = 2\ { [} I [ WLy — ([} W*15)2}. (A.33)

Noting that (ji; — p1) = Op(T~2) and (fiz — p2) = O,(T~/?), similar to (A.14), we obtain

T
62 =771 Z {Aﬁt — (1 — p1 + P11 M{ap—1 < A} — (fio — po + po)ti—11{d—1 > Ao}
=1

S (& — aj)Ad .}2
j=1\%J J t—j

T
=T7'Y e +0,(1) = D(1)*3, Kk
t=1
(A.34)
Therefore, by (A.28) — (A.34),
D, (' I [} LW*dW* — [ W*Iy [} T,dW*
B 1 { W& (fy I fo I - o Lo I )}
Wr (A) = D(1)2f2 Kk 2 1 1 11742 L irre g \2
1 Ell{fo I fo W — (fo w Il) }
2
{D(l)@l(fol I fol LW*dW?* — fol Wl fol I2dW*)} ]
1 1 * * 1 ypr=
E%l{fo I, fo Lw 2AW* — (fo w 12)2} (A 35)

v (Bnfiwen - e naw)’
WE 0y WL = (fy W ny?
L1 (fo B fy Wi = [y WL [y IQdW*)z
Wk oL fy W2h = (y W D)2

We can deduce the required results from the asymptotic distribution of W4 (\) and Assumption 2.

Under the alternative hypothesis, we can write W2 ()) as

1 1
WE\) = Ep’(U'spU)p + ﬁe’spU(U’spU)*U’spe. (A.36)

Since under the alternative hypothesis, we have T-'U’S,U = O,(1), T~'/2U’S,e = O,(1), and

6% = 0,(1), it can be shown that
1 1
WE\) = T P(T71U'S,U)p + gT_lﬂe’SpU(T_1U’SpU)_1T_1/2U’Spe

1
§(TU'S, U)p + 0,(1)

6-2

T (A.37)

= 0,(T).
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Therefore, WE ()) diverges to infinity as 7' — oo. This also implies that the test statistic diverges

to infinity as T — oo.

Part of (3b). From the proof of part (2b) and (3a), under Hy, the statistic t2(\)max can be

written as
U!S,e U,S,e
tB A max = 1~p 2~p ) A.
T mMLWWﬁﬂmWWﬁW%ﬂmW] (439
Using from (A.28) to (A.34), we have
1 1 * * 1 * 1 *
18( M) = max Jo I [y LWdw* — [fW*IL [; LdW
max (k'k{fljlflw*Zjl*(IIW*211)2})1/27
o0 0 (A.39)

Jy I fyy LW=AW* — [ W*I, [ L,dW*
(WE{fy B Jy W2E = (Jy W*W})W]

We can deduce the required results from the asymptotic distribution of 2 ()\)yax and Assumption

2. Next, we consider the properties of the test statistic under the alternative hypothesis. Under

the alternative hypothesis, t2(\)ymax can be expressed as

B _ P1 l / / —1/2
(1 Zmes l{&Z(U’lspUl)l}l/z + 5 UiSe(UiS, U7
(A.40)

P2 1., / —1/2
-U,S,¢(U,S, U .
G038, Uz 1+ 5 VeSre(UaS, U2) ]

Using T-1U}S,U; = 0,(1), T-/2U}S,e = 0,(1), T-1ULS, Uy = 0,(1), T-/2U}S,e = O,1,
and 62 = O, (1), we obtain

T1/2p1
{63(T-1US,Uy)~1}1/2

1
t2(N)max = max + ZT~Y2U)S,e(T1U}S, Uy ) ~V2,
g

T1/2P2
{62(T~1U38,Uy) " 1}1/2

(A.A41)

1
+ &T_l/QUlzspe(T_lUlzspU2)_1/2‘|

= max[Op(Tl/z), Op(Tl/z)L

which shows that t%()\)max diverges to minus infinity as 7" — oo. This also implies that the test

statistic diverges to minus infinity under the alternative hypothesis as T — oo.
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Table 8: Empirical results for money demand

EGt ES-® W1 t1 W3 3 WB1 81 wWB3 83

Double-log model
1960:1-2008:1 5% 5% 5% 10% 5% 5% - - - -

1979:10-2008:1 10%  10% 10% 5% - - 10% 10% - -
Semi-log model

1960:1-2008:1 - - - - - - 1% - - -
1979:10-2008:1 - - 1% - - - 1% 5% 1% 5%

1%, 5%, and 10% indicate that the null hypothesis of no cointegration is rejected at the 1%, 5%,
and 10% significance levels, respectively.

Table 9: TAR estimates

1 D2 A1 Ao oy Middle regime%
Double-log model
1960:1-2008:1 -0.077(0.019) -0.036(0.012) -0.012 0.009 0.012 14.55
1979:10-2008:1 -0.087(0.029) -0.085(0.026) -0.044 0.055 0.008 84.86
Semi-log model
1960:1-2008:1 -0.042(0.027) -0.099(0.026) -0.103 0.122 0.016 90.12
1979:10-2008:1 -0.050(0.024) -0.165(0.034) -0.048 0.054 0.009 86.64

The standard errors are given within parentheses. & shows the estimate of the standard deviation
of the error term. Middle regime % denotes the percentage of observations in the middle regime.

43



-0.16

-0.16

Figure 1: Residuals of the double-log model(— — —: the estimated thresholds)
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Figure 2: Residuals of the semi-log model(— — —: the estimated thresholds)
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