
Residual-based tests for cointegration in three-regime TAR

models

Daiki Maki∗

Ryukoku University
Shin-ichi Kitasaka†

Doshisha University

Abstract

This paper proposes residual-based tests for cointegration in three-regime threshold autore-

gressive (TAR) models. We propose Wald-type and t-type tests that have the null hypothesis of

no cointegration and the alternative of cointegration with three-regime TAR adjustment, and also

derive the asymptotic distributions. Monte Carlo simulations show that the proposed tests per-

form better than the Engle-Granger cointegration test and the cointegration test in a two-regime

TAR model introduced by Enders and Siklos (2001), under cointegration with three-regime TAR

adjustment, particularly when the threshold and sample size increase. When we apply these tests

to the money demand of the U.S., the proposed tests reject the null of no cointegration whereas

other tests do not.
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1 Introduction

Cointegration tests, which are important for investigating equilibrium relationship among

economic variables, have already been used as standard tools for time series analysis.

While these tests, including those in Engle and Granger (1987) and Johansen (1991),

have been standard tests, they assume linear or constant adjustment toward equilibrium.

Linear adjustment toward long-run equilibrium implies that the equilibrium error is con-

tinuously adjusted in all periods. However, the presence of transaction and trade costs

causes discontinuous adjustment toward equilibrium (e.g., Balke and Fomby, 1997). Such

adjustment is often modeled by the three-regime threshold autoregressive (TAR) process

that has a unit root process in the middle regime but a stationary AR process in the outer

regimes. Accordingly, the use of three-regime TAR models is valid in order to accurately

analyze economic systems. In fact, the three-regime TAR model has been popularly used

in economic applications, including those of purchasing power parity (Taylor, 2001), the

term structure of interest rates (Clements and Galvãro, 2003), and the law of one price

(Lo and Zivot, 2001).

Bec, Ben Salem, and Carrasco (2004), Park and Shintani (2005), Kapetanios and Snell

(2006), Seo (2008), and Bec, Guay, and Guerre (2008) have recently developed unit root

tests, i.e., univariate cointegration tests with known cointegrating parameters, in three-

regime TAR models1). This is because, as discussed in Pippenger and Gorening (1993)

and Taylor (2001), standard unit root tests have low power against three-regime TAR

processes. Despite these significant studies, when applied researchers test for three-regime

TAR cointegration with unknown cointegrating parameters, they employ a two-step pro-

cedure. The first step confirms the presence of cointegration relationship among variables

using standard tests. If the cointegration relationship is obtained, the second step uses

linearity tests to ascertain whether a threshold behavior exists. However, this procedure

does not possess sufficient power against threshold cointegration because of the low power

of standard cointegration tests under three-regime TAR cointegration similar to the stan-
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dard unit root tests (e.g., Pippenger and Gorening, 2001). Since it is possible that the

low power of standard cointegration tests leads to unreliable results, a direct test that has

both the null hypothesis of no cointegration and the alternative hypothesis of cointegration

with three-regime TAR adjustment is required.

This paper proposes residual-based tests for cointegration in three-regime TAR mod-

els. Although recent studies, including those of Enders and Siklos (2001), Hansen and Seo

(2002), and Kapetanios, Shin, and Snell (2006), have also developed cointegration tests

in nonlinear frameworks, residual-based tests for the null hypothesis of no cointegration

against the alternative hypothesis of cointegration with three-regime TAR adjustment

have not been established yet2). Seo (2006) developed cointegration tests based on the

three-regime TAR vector error correction model (VECM) with a known cointegrating vec-

tor. We use the residual-based approach because this approach not only makes it possible

to estimate the cointegrating vector but also is simple and convenient for practitioners.

We propose Wald-type and t-type tests and derive the asymptotic distributions. Unlike

the limit distributions in Kapetanios and Shin (2006) and Seo (2006, 2008), our approach,

in particular, does not degenerate with respect to the threshold parameters in the limit

because we appropriately specify the parameter space of the thresholds. The point ac-

curately shown by Park and Shintani (2005) is important in the case of testing for both

cointegration and linearity. The proposed tests do not require bootstrap to calculate the

critical values and improve over-rejection and are as convenient and practical for applied

researchers as are standard cointegration tests.

Monte Carlo simulations demonstrate that under cointegration with three-regime TAR

adjustment, the proposed tests perform better than the Engle-Granger cointegration test

and the cointegration test in a two-regime TAR model introduced by Enders and Siklos

(2001), particularly when the threshold and sample size increase. To substantiate the

usefulness of our tests for empirical applications, we apply some tests to the money demand

of the U.S. and find that only the proposed test rejects the null of no cointegration whereas

other tests do not. This implies that the money demand of the U.S. has three-regime TAR
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adjustment toward equilibrium. Thus, Monte Carlo simulations and applications clearly

prove the advantages of the proposed tests.

The organization of this paper is as follows. Section 2 presents the test statistics and

asymptotic distributions. Section 3 investigates the size and power of the tests introduced

in Section 2, by using Monte Carlo simulations. In Section 4, the empirical applications

in U.S. money demand are presented. Finally, Section 5 summarizes the paper. Proofs of

theorems are gathered in the appendix.

2 Testing for cointegration in three-regime TAR models

2.1 Test statistics

As an assumption of the tests for threshold cointegration, let yt and x′
t denote observable

I (1) variables, where yt is a scalar and xt = (x1t, · · · , xmt)′ is an (m × 1) vector. The

long-run equilibrium relationship is given by

yt = β′xt + ut, t = 1, 2, · · · , T, (1)

where β′ = (β1, . . . , βm) are estimated parameters and ut is the equilibrium error. ut

follows the three-regime TAR process:

ut =


φ1ut−1 + et if ut−1 ≤ λ1

ut−1 + et if λ1 < ut−1 ≤ λ2,

φ2ut−1 + et if ut−1 > λ2

(2)

where et is a zero mean error, λ1 and λ2 are thresholds, and we assume λ2 > λ1
3). The

existence of the long-run equilibrium relationship involves the stationarity of ut. The

stationarity conditions of (2) require that −1 < φ1 < 1 and −1 < φ2 < 14). For (2), while

ut has a unit root process in the range of λ1 < ut−1 ≤ λ2 and does not revert to long-run

equilibrium, i.e., 0, ut reverts toward 0 if ut−1 ≤ λ1 or ut−1 > λ2. ut modeled by (2) is

related to various economic phenomena where relatively small deviations from long-run
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equilibrium do not adjust the equilibrium error, while relatively large deviations do. Model

(2) includes various restricted models. The Engle-Granger test is obtained by imposing

φ1 = φ2 and λ1 = λ2 = 0. The two-regime threshold cointegration test introduced by

Enders and Siklos (2001) is obtained by imposing λ1 = λ2 = 0. To test for two-regime

threshold cointegration, Enders and Siklos (2001) proposed an F statistic.

To test for cointegration in (1) and (2), we consider the following regression model

using the residual expressed by ût = yt − β̂′xt:

∆ût = ρ1ût−11{ût−1 ≤ λ1} + ρ2ût−11{ût−1 > λ2} +
p∑

j=1

αj∆ût−j + εt, (3)

where εt is a stationary error with zero mean; 1{·} is the indicator function such that

1{·} is 1 if {·} is true and 0, otherwise5). 1{ût−1 ≤ λ1} and 1{ût−1 > λ2} are orthogonal

to each other. The null hypothesis of no cointegration and the alternative hypothesis of

threshold cointegration for (3) are

H0 : ρ1 = ρ2 = 0, H1 : ρ1 < 0, ρ2 < 0. (4)

Denoting α = (α1, . . . , αp)′ and ∆ûp
t−p = (∆ût−1, . . . , ∆ût−p), (3) is rewritten as

∆ût = h′
tθ + εt, (5)

where ht = (ût−11{ût−1 ≤ λ1}, ût−11{ût−1 > λ2}, ∆ûp
t−p)

′, and θ = (ρ1, ρ2, α
′)′.

We first consider a fixed λ = (λ1, λ2). Let θ̂ be the OLS estimator of θ, ε̂t = ∆ût −h′
tθ̂,

and σ̂2 =
∑T

t=1 ε̂2t /(T − 2− p). When λ = (λ1, λ2) is given, the Wald statistic required to

test for (4) is given by

WT (λ) =
1
σ̂2

ρ̂′
[
R

( T∑
t=1

hth
′
t

)−1

R′
]−1

ρ̂, (6)

where ρ̂ = (ρ̂1, ρ̂2)′ is the OLS estimator of ρ and R is the 2 × (p + 2) matrix such

that Rθ̂ = ρ̂. For an unknown λ = (λ1, λ2), we compute (6) for each possible threshold

and take the largest value across all possible thresholds. Then, the test statistic using a
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supremum-type statistic is defined as

sup
λ∈ΛT

WT (λ) ≡ sup
λ∈[λmin,λmax]

WT (λ), (7)

where ΛT is a random sequence of the parameter space of thresholds given by the functions

of (û1, · · · , ûT ). In order to utilize the sup statistic, it is required that λ ∈ [λmin, λmax].

First, we arrange the values of ût in the ascending order, i.e., û(1) < û(2) < . . . < û(T );

second, we select, for example, λmin = û([5T/100]) and λmax = û([95T/100]), where [·] is

the integer part. Furthermore, when assuming that 0.1 ≤ P (λ1 ≤ ût ≤ λ2) ≤ 0.9, this

selection guarantees the existence of at least 10% of the observations for the inside and

outside regimes. In this assumption, the threshold λ1 includes equally spaced 100 points

between the 5% and 45% quantiles of the arranged values, and the upper threshold λ2

includes equally spaced 100 points between the 55% and 95% quantiles. Although the

selections of λmin and λmax are rather arbitrary, it is important to guarantee sufficient

observations to identify the regression parameters. When the cointegration relationship

has a constant term, the demeaned residual ût = yt − δ̂0 − β̂′xt is employed. When the

cointegration relationship has a constant and trend term, the demeaned and detrended

residual ût = yt − δ̂0 − δ̂1t − β̂′xt is employed.

It should be noted that the Wald statistic cannot clarify the difference between H1 of

(4) and the intermediate case of the threshold no cointegration

H2 : ρ1 = 0, ρ2 < 0 or ρ1 < 0, ρ2 = 0 (8)

because the Wald statistic increases even in the case of H2. For a two-regime TAR model,

Enders and Siklos (2001) and Caner and Hansen (2001) pointed out the problem and

introduced a t-statistic. In order to accurately distinguish between H0, H1, and H2 under

three-regime TAR cointegration, we propose a t-statistic6). Clearly, threshold cointegra-

tion requires ρ1 < 0 and ρ2 < 0. This implies that the condition of threshold cointegration

is satisfied if the largest of the individual t-statistic is significant. For example, when

the t-statistics of ρ1 and ρ2 are −2.5 and −1.7, respectively, investigating whether the
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t-statistic of ρ2 is significant will be sufficient for the condition of threshold cointegration.

For a fixed λ = (λ1, λ2), we denote the largest t-statistic between ρ1 and ρ2 as

tT (λ)max = max[t1, t2], (9)

where t1 and t2 are t-statistics of ρ1 and ρ2, respectively. For an unknown λ = (λ1, λ2),

we compute tT (λ)max for each possible threshold and take the smallest value across all

possible thresholds. Then, the test statistic using an infimum-type statistic is given by

inf
λ∈ΛT

tT (λ)max ≡ inf
λ∈[λmin,λmax]

tT (λ)max. (10)

We also introduce the BAND-TAR model given by

∆ût = (µ1 + ρ1ût−1)1{ût−1 ≤ λ1}+ (µ2 + ρ2ût−1)1{ût−1 > λ2}+
p∑

j=1

αj∆ût−j + εt. (11)

The main difference between (3) and (11) is the existence of each intercept parameter in

the outer regimes. Equation (11) has a regime specific mean, but (3) does not. For (11),

the equilibrium error adjusts to the edge of the band [λ1, λ2]. Unlike the linear model, the

intercept parameters in (11) contribute to the persistence of the process. The BAND-TAR

model (11) is motivated by situations such that a policy intervention attempts to control

an equilibrium error within a target band rather than toward an equilibrium point (zero)

for (3). The null hypothesis and the alternative hypothesis for (11) are7)

H0 : ρ1 = ρ2 = 0, H1 : ρ1 < 0, ρ2 < 0. (12)

(11) is rewritten as

∆ût = g′tθB + εt, (13)

where gt = (1{ût−1 ≤ λ1}, ût−11{ût−1 ≤ λ1},1{ût−1 > λ2}, ût−11{ût−1 > λ2}, ∆ûp
t−p)

′

and θB = (µ1, ρ1, µ2, ρ2, α
′)′. For a fixed λ = (λ1, λ2), the Wald statistic to test for (12) is

WB
T (λ) =

1
σ̂2

B

ρ̂′
[
RB

( T∑
t=1

gtg
′
t

)−1

R′
B

]−1

ρ̂, (14)
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where σ̂2
B =

∑T
t=1 ε̂2t /(T − 4 − p), ε̂t are the residuals obtained from (11), and RB is the

2× (p + 4) matrix such that RB θ̂B = ρ̂. For an unknown λ = (λ1, λ2), the test statistic is

defined as

sup
λ∈ΛT

WB
T (λ) ≡ sup

λ∈[λmin,λmax]
WB

T (λ), (15)

where λ is selected in a manner that is similar to (7). The test statistic using the t-type

statistic such as (10) is given by

inf
λ∈ΛT

tBT (λ)max ≡ inf
λ∈[λmin,λmax]

tBT (λ)max, (16)

where tBT (λ)max = max[tB1 , tB2 ]; tB1 and tB2 are t-statistics of ρ1 and ρ2 in (11).

2.2 Asymptotic distribution

To derive the asymptotic distribution, we denote an (n × 1) vector of I(1) variables as

zt = (yt,x′
t)
′, where yt is a scalar and xt is an m(= n − 1) vector. zt is generated by

zt = zt−1 + ξt, (17)

where ξt is assumed to be a stationary ARMA process with zero mean and a finite variance

matrix. We make the following assumptions.

Assumption 1. (a) ξt =
∑∞

j=0 Cjυt−j , where C0 = In,
∑∞

j=0 j‖Cj‖ < ∞, υt ∼i.i.d.(0,
∑

)

with
∑

> 0, E|υt|r < ∞ for some r ≥ 4, and In is the (n× n) identity matrix. (b) z0 is a

random vector with ‖z0‖ < ∞.

From Assumption 1, T−1/2
∑[Tr]

t=1 ξt weakly converges to (n × 1) vector Brownian mo-

tion [0, 1] with covariance matrix Ω. We denote (n × 1)-vector Brownian motion as

B(r) = (By(r), Bx(r)′)′, where Bx(r) is (m × 1)-vector Brownian motion. Covariance

matrix Ω is defined as

Ω =

ω11 ω′
12

ω21 Ω22

 , (18)
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where we assume Ω22 > 0. Ω is decomposed as Ω = L′L. L is given by

L =

`11 0

`21 L22

 , (19)

where `11 = (ω11 − ω′
21Ω

−1
22 ω21)1/2, `21 = Ω−1/2ω21, and L22 = Ω1/2

22 . From (19), we have

B(r) = L′W (r), where W (r) = (Wy(r),Wx(r)′)′ is (n × 1)-vector standard Brownian

motion.

When we set η̂ = (1,−β̂′)′ in regression (3), it follows that

η̂ =
(
1,−(T−2 ∑T

t=1 ytx′
t)(T

−2
∑T

t=1 xtx′
t)
−1

)′

⇒
(
1,−(

∫ 1
0 ByB

′
x

∫ 1
0 BxB′

x)−1
)′

≡ η.
(20)

Using Lemma 2.2 of Phillips and Ouliaris (1990), it can be shown that

T−1/2ût ⇒ η′B(r)

= `11k
′W (r) = `11W

∗(r),
(21)

where k =
(
1,−(

∫ 1
0 WyW

′
x

∫ 1
0 WxW ′

x)−1
)′

and W ∗(r) = Wy(r)−
∫ 1
0 WyW

′
x(

∫ 1
0 WxW ′

x)−1Wx(r).

In addition, ∆ût is denoted as ∆ût = η̂′ξt ⇒ η′dB(r). Since ξt is a stationary ARMA

process under Assumption 1, ∆ût is also a stationary ARMA process. We represent it as

εt =
∑∞

j=0 Dj∆ût−j = D(L)∆ût, where L is the lag operator.

For (3), the threshold parameter λ = (λ1, λ2) has an identification problem: it is not

identified under the null hypothesis of no cointegration, but it is identified only under the

alternative hypothesis of cointegration with three-regime TAR adjustment. The problem

wherein a nuisance parameter is identified only under the alternative hypothesis is known

as the Davies problem. Davies (1987), Andrews and Ploberger (1994), and Hansen (1996)

introduced approaches to overcome the problem. It should be noted that the transition

variable ût−1 behaves differently under the null and alternative hypotheses. ût−1 explodes

under H0, but not under H1. This implies that it is important to select an appropriate

parameter space of thresholds in order to derive correct asymptotic distributions. If ût is
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stationary under both H0 and H1, we can deal with similar parameter spaces of thresholds

in the limit. However, the test that has the null hypothesis of no cointegration and the

alternative hypothesis of cointegration with three-regime TAR adjustment is not such a

case.

We specify the indicator function under the null hypothesis as

1{T−1/2ût−1 ≤ T−1/2λ1} and 1{T−1/2ût−1 > T−1/2λ2} with λ = (λ1, λ2) ∈ ΛT (22)

and under the alternative hypothesis as

1{ût−1 ≤ λ1} and 1{ût−1 > λ2} with λ = (λ1, λ2) ∈ ΛT , (23)

where ΛT is a random sequence of the parameter space of thresholds given by functions of

(û1, · · · , ûT ). Equations (22) and (23) have normalized and unnormalized sets of thresh-

old parameters under H0 and H1, respectively. The setting is important for deriving the

asymptotic distribution of the test statistics. We follow Park and Shintani (2005) and

make the following assumption.

Assumption 2. ΛT ⇒ Λ, where Λ is a compact subset of the real line.

Assumption 2 implies that limit parameter space Λ is a random subset of the real line and

makes it possible to allow the presence of the middle regime under the null hypothesis.

In other words, the probability of belonging to the middle regime with λ1 < ût ≤ λ2 is

positive at all times, even when the sample size increases. This probability is expressed as

P (λ1 < ût ≤ λ2) = P (T−1/2λ1 < T−1/2ût ≤ T−1/2λ2)

⇒ P (λ1T < η′B(r) ≤ λ2T )

= P (λ̃1 < W (r)∗ ≤ λ̃2) > 0,

(24)

where (λ1T , λ2T ) = (T−1/2λ1, T
−1/2λ2) and (λ̃1, λ̃2) = (`−1

11 λ1T , `−1
11 λ2T ), respectively.

Statistics derived from this assumption do not degenerate with respect to the thresh-

old parameters in the limit. In contrast, if Assumption 2 does not hold, the probability
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of being in the middle regime with λ1 < ût ≤ λ2 becomes 0 when the sample size grows.

Thus,

P (λ1 < ût ≤ λ2) = P (T−1/2λ1 < T−1/2ût ≤ T−1/2λ2) → 0.

The difference in the probability of being in the middle regime is crucial for the asymptotic

distribution, and as a result, it appears to cause the difference in the size and power

performances.

The following theorem is required to derive the asymptotic distributions of the test

statistics.

Theorem 1. If Assumptions 1 and 2 and H0 hold, then we obtain

(1a) T−1
T∑

t=1

ût−11{ût−1 ≤ λ1}εt ⇒ D(1)`2
11

∫ 1

0
1{W ∗ ≤ λ̃1}W ∗dW ∗,

(1b) T−2
T∑

t=1

û2
t−11{ût−1 ≤ λ1} ⇒ `2

11

∫ 1

0
1{W ∗ ≤ λ̃1}W ∗2,

(1c) T−1
T∑

t=1

ût−11{ût−1 > λ2}εt ⇒ D(1)`2
11

∫ 1

0
1{W ∗ > λ̃2}W ∗dW ∗,

(1d) T−2
T∑

t=1

û2
t−11{ût−1 > λ2} ⇒ `2

11

∫ 1

0
1{W ∗ > λ̃2}W ∗2,

where W ∗ is a shorthand notation for W ∗(r) and D(1) =
∑∞

0 Dj.

If the parameter space of thresholds is a fixed compact set, as assumed by Kapetanios

and Shin (2006) and Seo (2006, 2008), the threshold parameters degenerate under a unit

root process or no cointegration. Accordingly, the indicator functions from (1a) to (1d) in

Theorem 1 are replaced by 1{W ∗ ≤ 0} or 1{W ∗ > 0}. As demonstrated by Seo (2006) and

Kapetanios and Shin (2006), the use of sup-type tests in the parameter space of thresholds

with a fixed compact set causes severe over-rejection under H0, and as a result, the sup-
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type tests using asymptotic critical values will lead to unreliable results8). However, the

test statistic proposed in the paper has a better size performance even when we employ

asymptotic critical values; this is because we appropriately deal with the parameter space

of thresholds. The following theorems present the asymptotic distributions of the test

statistics.

Theorem 2. If Assumptions 1 and 2 and p = o(T 1/3) hold, statistics (7) and (10)

have the following asymptotic distributions.

(2a) sup
λ∈ΛT

WT (λ) ⇒ sup
λ∈Λ

W (λ),

(2b) inf
λ∈ΛT

tT (λ)max ⇒ inf
λ∈Λ

t(λ)max.

W (λ) and t(λ)max are defined as follows:

W (λ) =

( ∫ 1
0 1{W ∗ ≤ λ̃1}W ∗dW ∗

)2

(k′k)
∫ 1
0 1{W ∗ ≤ λ̃1}W ∗2

+

( ∫ 1
0 1{W ∗ > λ̃2}W ∗dW ∗

)2

(k′k)
∫ 1
0 1{W ∗ > λ̃2}W ∗2

and

t(λ)max = max

[ ∫ 1
0 1{W ∗ ≤ λ̃1}W ∗dW ∗(

k′k
∫ 1
0 1{W ∗ ≤ λ̃1}W ∗2

)1/2
,

∫ 1
0 1{W ∗ > λ̃2}W ∗dW ∗(

k′k
∫ 1
0 1{W ∗ > λ̃2}W ∗2

)1/2

]
.

Under the alternative hypothesis that has cointegration with three-regime TAR adjustment,

(2a) and (2b) diverge to infinity and minus infinity, respectively, as T → ∞.

The test statistics of BAND-TAR model (11) have the following asymptotic distribu-

tions.

Theorem 3. If Assumptions 1 and 2 and p = o(T 1/3) hold, statistics (15) and (16)

have the following asymptotic distributions.
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(3a) sup
λ∈ΛT

WB
T (λ) ⇒ sup

λ∈Λ
WB(λ),

(3b) inf
λ∈ΛT

tBT (λ)max ⇒ inf
λ∈Λ

tB(λ)max.

WB(λ) and tB(λ)max are defined as follows:

WB(λ) =

( ∫ 1
0 I1

∫ 1
0 I1W

∗dW ∗ −
∫ 1
0 W ∗I1

∫ 1
0 I1dW ∗

)2

k′k
{ ∫ 1

0 I1

∫ 1
0 W ∗2I1 − (

∫ 1
0 W ∗2I1)2

}
+

( ∫ 1
0 I2

∫ 1
0 I2W

∗dW ∗ −
∫ 1
0 W ∗I2

∫ 1
0 I2dW ∗

)2

k′k
{ ∫ 1

0 I2

∫ 1
0 W ∗2I2 − (

∫ 1
0 W ∗2I2)2

}
and

tB(λ)max =max

[ ∫ 1
0 I1

∫ 1
0 I1W

∗dW ∗ −
∫ 1
0 W ∗I1

∫ 1
0 I1dW ∗(

k′k
{ ∫ 1

0 I1

∫ 1
0 W ∗2I1 − (

∫ 1
0 W ∗2I1)2

})1/2
,

∫ 1
0 I2

∫ 1
0 I2W

∗dW ∗ −
∫ 1
0 W ∗I2

∫ 1
0 I2dW ∗(

k′k
{ ∫ 1

0 I2

∫ 1
0 W ∗2I2 − (

∫ 1
0 W ∗2I2)2

})1/2

]

where I1 = 1{W ∗ ≤ λ̃1} and I2 = 1{W ∗ > λ̃2}. Under the alternative hypothesis that has

cointegration with BAND-TAR adjustment, (3a) and (3b) diverge to infinity and minus

infinity, respectively, as T → ∞.

For theorems 2 and 3, when the first regression has a constant term, W ∗ is replaced by

the demeaned Brownian motion9). Similarly, when the first regression has a constant and

trend, W ∗ is replaced by the demeaned and detrended Brownian motion.

It should be noted that the critical values for the test statistics depend on λmin, λmax,

and the number of regressors. However, since bootstrap methods are not necessary to

calculate the critical values, the test is convenient and practical for applied researchers.

Tables 1 and 2 show critical values of the tests from m = 1 to m = 5. The asymptotic

critical values approximated by T = 1, 000 are obtained from 10,000 replications. We
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present three models: Model 0 contains no deterministic terms; Model 1 contains an

intercept in the first regression; Model 2 contains both intercept and trend in the first

regression. We calculate these critical values for three types of grid space (λmin, λmax) =

Gp(û[γT ], û[(1−γ)T ]) with 0 < γ < 0.5: G1 with γ = 0.05, G2 with γ = 0.10, and G3

with γ = 0.15. Each model searches from the 100γ% to the 50(1 − 2γ)% quantiles of

the arranged sample (û(1), · · · , û(T )) to determine the lower threshold λ1, and from the

50(1 + 2γ)% to the 100(1 − γ)% quantiles to determine the upper threshold λ2 such that

at least (100× 2γ)% of the sample is in the middle regime. For each model, the threshold

λ1 includes equally spaced 100 points between the 100γ% and 50(1−2γ)% quantiles of the

arranged values, and the upper threshold λ2 includes equally spaced 100 points between

the 50(1+2γ)% and 100(1−γ)% quantiles. Although the selection of γ is rather arbitrary,

it is more important that it guarantees sufficient observations to identify the regression

parameters.

3 Monte Carlo simulations

In this section, the size and power properties of the tests introduced in Section 2 are

examined and compared to the properties of the tests in Engle and Granger (1987) and

Enders and Siklos (2001). The nominal size of the test is 0.05, and we examine the sample

sizes of T = 100, 200, and 400. For all experiments, 100 initial observations are discarded

in order to avoid the effect of the initial conditions (the initial value is set to zero); that

is, data with T + 100 are generated. The number of simulations is 10,000. In this section,

we denote each test as follows: the t-type test of Engle and Granger (1987) as EG-t; the

Φ test in a two-regime TAR model of Enders and Siklos (2001) as ES-Φ; (7) with the grid

space G1 as W1 and G3 as W3; (10) with the grid space G1 as t1 and G3 as t3; (15) with

the grid space G1 as WB1 and G3 as WB3; and (16) with the grid space G1 as tB1 and

G3 as tB3. Note that the differences between G1 and G3 depend on the manner in which

the grids for λ1 and λ2 are selected. It is important to investigate whether the size and
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power properties depend on the grid space of the thresholds. We use the demeaned data

ût = yt − δ̂0 − β̂1x1t, where δ̂0 and β̂1 are the OLS estimators.

3.1 Size

We generate the following data in order to examine the size performance:

yt = δ0 + β1xt + ut, (25)

∆ut = et, (26)

et = φet−1 + ε1t, (27)

∆xt = ε2t, (28)ε1t

ε2t

 ∼ i.i.d.N

0

σ2
1 0

0 σ2
2

 , (29)

where δ0 = 1 and β1 = 2, and we consider φ = (0.5, 0,−0.5), σ2
1 = 1, and σ2

2 = (1, 4).

For all tests, we use the regression with an augmentation term ∆ût−1, except for φ = 0.

A lag order ∆ût−1 is added to the models when φ 6= 0, whereas no lag order is added

when φ = 0. Table 3 reports the rejection frequencies of the tests. The sizes of EG-t,

ES-Φ, W1, t1, W3, and t3 are close to the nominal level of 5% and exhibit reasonable

and acceptable size properties when φ = 0 and σ2
2 = 1, regardless of the sample size. The

tests in BAND-TAR model slightly under-reject the null hypothesis in small samples. It

should be noted that these tests require the estimation of additional parameters. This

indicates that the estimation of additional parameters leads to under-rejection in a small

sample. Although these tests tend to slightly under-reject the null hypothesis in a small

sample, the under-rejection appears to become less frequent as the sample size increases.

The use of the size-adjusted critical values based on a finite sample may be recommended

for a strict analysis.

All the tests for φ = 0 and σ2
2 = 4 have properties that are similar to those when

φ = 0 and σ2
2 = 1. The size does not depend on the degree of the variance of ε2t. The

EG-t and ES-Φ tests have an appropriate size even in the presence of a serially correlated

15



error. The proposed tests slightly under-reject or over-reject the null hypothesis in the

presence of a serially correlated error, whereas the under-rejections appear to become

less frequent when the sample sizes are large. In addition, the under- or over-rejections

of W3 are less significant than those of W1. Although sup-type tests using asymptotic

critical values as demonstrated by Kapetanios and Shin (2006) and Seo (2006) exhibit

severe over-rejections even in a relatively large sample, our proposed statistics have more

reasonable and acceptable sizes even in a small sample and have no severe over-rejections.

It is noteworthy that our proposed tests do not degenerate with respect to the threshold

parameters under no cointegration, and the properties allow a positive probability of being

in the middle regime in the limit. The results indicate that it is necessary to (a) have the

appropriate threshold parameter space that does not degenerate under no cointegration

and (b) guarantee the probability of being in the middle regime in the limit, in order to

acquire a good size performance in a small sample when we use asymptotic critical values.

3.2 Power

Next, we focus on the power comparison under threshold cointegration. To avoid the

effects of slight under-rejection, as reported in Table 3, and accurately examine the power

performance, we use size-adjusted critical values based on finite samples10). The data to

examine the power is generated as follows:

yt = δ0 + β1xt + ut, (30)

∆ut = ρ1ut−11{ut−1≤−λ} + ρ2ut−11{ut−1>λ} + ε1t, (31)

∆xt = ε2t, (32)ε1t

ε2t

 ∼ i.i.d.N

0

1 0

0 1

 , (33)

where δ0 = 1, β1 = 2, ρ1 = ρ2 = −0.05, and λ = (0, 2, 4, 8). Table 4 presents the results

of power performance and the percentage of data in the middle regime. The increase in

λ expands the no-adjustment region toward equilibrium. Although the power of the tests
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increases with the increase in the sample size, a general finding obtained from Table 4

is that the powers of all the tests change drastically with an increase in λ, i.e., with an

increase in the percentage of the middle regime. This implies that the threshold has a

clear impact on the power of each test, particularly as the threshold increases.

When λ = 0, (31) reduces to an AR(1) model. The EG-t test performs best for this

alternative since this alternative is designed for this test. In addition, the EG-t test also

has a better performance even when the alternative is threshold cointegration with λ = 2.

It is noteworthy that in the case where the EG-t test performs better than the tests based

on three-regime TAR models, the percentage of the middle regime is small; for example,

it is approximately 43% for λ = 2. However, the power of the EG-t test decreases rapidly

as the no-adjustment region expands and the sample size increases. In other words, the

larger the percentage of the middle regime, the more difficult it is for the EG-t test to

detect the reversion toward long-run equilibrium.

However, the decrease in the powers of the proposed tests is clearly different from that

of the EG-t test. When the threshold increases, the power of the sup tests is superior to

that of the EG-t test, and the decrease in the powers of the Wald-type tests are much

slower than that of the EG-t test, which ignores the threshold behavior λ. We notice that

the middle regime % employed by these statistics slowly approaches the true value when

the sample size increases. The ES-Φ test, which is designed for two-regime TAR models,

also performs better than the EG-t test when the threshold and sample size increase. For

example, from Table 4 with λ = 8 and T = 400, we observe that the powers of EG-t, ES-Φ,

W1, W3, WB1, and WB3 are 0.156, 0.172, 0.256, 0.224, 0.183, and 0.180, respectively.

A threshold does not have a clear impact on the powers of Wald-type tests as compared

with the EG-t and ES-Φ tests. The results show that the Wald-type tests perform better

than EG-t and ES-Φ when the threshold and sample size increase.

A comparison between Wald-type and t-type tests show that Wald-type tests are domi-

nant to t-type tests when the threshold and sample size increase. Practitioners are advised

to use the Wald-type tests if economic theories predict threshold cointegration and the
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EG-t test cannot reject the null hypothesis of no cointegration. The t-type tests would

be used in a supplementary test to ascertain the robustness of stationarity. In addition,

W3 and t3 outperform W1 and t1, respectively, except for λ = 8 and T = 400. W1,

which is the statistic with the largest grid space of thresholds, performs poorly under the

three-regime TAR process with a small threshold, whereas it performs better in the case

of an increase in the percentage of the middle regime for a large sample size. The results

imply that the grid space of the threshold parameters influences the power performance

of the tests.

The rejection rates of the BAND-TAR models are significantly low for a small threshold

and/or small samples. It is possible that the estimation of additional parameters and the

test for joint significance lead to a low power in a small threshold and/or small samples. In

fact, WB1 and WB3 give less rejection rates than do W1 and W3. From the underlying

model, it is expected that the test based on the BAND-TAR model outperforms EG-t

when the true process is a three-regime TAR process. Contrary to expectation, the test

based on the BAND-TAR model has much lower power than the EG-t test, particularly

when the threshold and sample size are relatively small. The BAND-TAR model may be

useless in uncovering long-run equilibrium as long as the threshold and/or sample size are

small. For example, for λ = 2 and T = 200, the powers of EG-t, ES-Φ, W1, W3, WB1,

and WB3 are 0.194, 0.179, 0.148, 0.166, 0.071, and 0.066, respectively.

Table 5 reports the results for ρ1 = ρ2 = −0.3. We observe from Tables 4 and 5 that the

no-adjustment region for ρ1 = ρ2 = −0.3 is larger than that for ρ1 = ρ2 = −0.05. For the

case when λ = 4, the three-regime TAR models with ρ1 = ρ2 = −0.05 have approximately

68% observations in the middle regime, whereas the three-regime TAR models with ρ1 =

ρ2 = −0.3 have approximately 90% observations. The power gain of the Wald-type tests

over the EG-t and ES-Φ tests become more substantial than ρ1 = ρ2 = −0.05 when the

threshold and sample size increase. For example, when T = 400 and λ = 8, the powers

of EG-t, ES-Φ, W1, W3, WB1, and WB3 are 0.292, 0.350, 0.786, 0.541, 0.856, and 0.791,

respectively. The use of the Wald-type tests is considerably more valid than that of the
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EG-t and ES-Φ tests. It should be noted that WB1 and WB3 also have a high power

superiority for a large threshold. This indicates that the BAND-TAR model performs

much better as the threshold and sample size increase, and the outer regimes are less

persistent.

We also examine power performance under the three-regime TAR process with an

asymmetric adjustment (ρ1, ρ2) = (−0.15,−0.05). It would be more informative to assess

the power for ρ1 6= ρ2 because some applications supported asymmetric adjustment (e.g.,

Bec, Ben Salem, and Carrasco, 2004; Kapetanios and Shin, 2006). The test results pre-

sented in Table 6 indicate that all the tests have a higher power than those given in Table

4, but a lower power than those given in Table 5. The percentage of observations in the

middle regime is greater than that in Table 4 but lower than that in Table 5. Thus, the

results in Table 6 indicate performances between Tables 4 and 5.

Table 7 presents power performance under the BAND-TAR model given by

∆ut = (µ1 + ρ1ut−1)1{ut−1≤−λ} + (µ2 + ρ2ut−1)1{ut−1>λ} + εt, (34)

where µ1 = λρ1, µ2 = −λρ2, ρ1 = ρ2 = −0.3, and λ = (2, 4, 8). The adjustment speed in

the outer regimes is similar to that of Table 5. A comparison between the results of Tables 5

and 7 provides evidence that the rejection frequencies of the tests are affected by a constant

of each regime. The reason is that BAND-TAR model (34) has a larger persistence than

equilibrium TAR model (31) when both models have the same adjustment speed in outer

regimes11). However, we do not observe much difference between the results of Tables 4

and 7 because the percentage of observations in the middle regime for Table 7 is similar to

that of Table 4, where the adjustment speed of the outer regime of (31) is ρ1 = ρ2 = −0.05.

Although it is expected that WB1 and WB3 designed for the alternative hypothesis of the

BAND-TAR model exhibit the best power among the tests, their power performances are

not markedly different from those of W1 and W3 even for a large threshold. Employing

the BAND-TAR model may not significantly influence the power even if the true process

is a BAND-TAR one.
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4 Applications to the money demand of the U.S.

In this section, we apply the tests introduced in Section 2 to the money demand of the

U.S. We consider the money demand function as follows:

Double-log model: Mt/Pt = δ0 + βY Yt + βRRt + ut, (35)

Semi-log model: Mt/Pt = δ0 + βY Yt + βrrt + ut, (36)

where Mt, Pt, Yt, Rt, and rt denote nominal money, prices, real income, interest rate in

logarithm, and interest rate in level, respectively. ut denotes the equilibrium error of the

money demand function. For the underlying theoretical backgrounds of the TAR model

in money demand, Milbourne (1987) pointed out that money demand was characterized

by the Buffer-Stock model. This shows that agents in economies do not act to adjust

their money balances when the deviation from equilibrium is within adjustment costs but

they do so when the deviation is relatively large, i.e., over the thresholds. Sarno, Taylor,

and Peel (2003), who proposed the nonlinear error correction model in the presence of

transaction costs, supported the smooth transition adjustment of the money demand of

the U.S. (see also Cuthbertson and Taylor, 1987; Mizen, 1997; Sarno, 1999). Maki and

Kitasaka (2006) provided empirical evidence to prove that the money demand in Japan

is characterized by a two-regime TAR process. These studies provide findings supporting

nonlinear adjustment of money demand.

We use M1 as nominal money, the consumer price index as prices, and the index of

industrial production as real income. These variables are data that are seasonally adjusted.

For the interest rate, we use the three-month Treasury Bill interest rate. The monthly

data obtained from the Federal Reserve Bank of St.Louis consist of 577 periods from

1960:1 to 2008:1. We consider two sample periods -1960:1-2008:1(577 periods) and 1979:10-

2008:1(337 periods)- corresponding to changes in Federal Reserve operating procedures.

The tests have a constant term in the first regression. Although we do not present the

results of the unit root tests of variables, the tests provide evidence of I(1). We determined
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the appropriate lag length for p = 12 and then excluded the insignificant augmentation

terms. Since Enders and Siklos (2001) did not tabulate the critical values of the Φ test

for regressors with m = 2, we calculated the values12).

Table 8 presents the results of cointegration tests. We find clear differences among the

tests. The results of the double-log model for the full sample show that EG-t, ES-Φ, W1,

W3, and t3 reject the null hypothesis, but the BAND-TAR model does not. This implies

that the equilibrium error is a three-regime TAR model with a small percentage of the

middle regime because Monte Carlo simulations in the previous section demonstrate that

the BAND-TAR model does not perform well when the true process is a three-regime

TAR model with a small percentage of the middle regime. On the other hand, in the

case of the semi-log model, the EG-t and ES-Φ tests do not reject the null hypothesis of

no cointegration in both the sample periods even at the 10% significance level, whereas

tests based on the three-regime TAR models reject the null hypothesis at the 1% or 5%

significance level and provide strong evidence of a cointegration relationship. Monte Carlo

simulations and empirical results indicate that the equilibrium error of money demand in

the semi-log model is a three-regime TAR process with a large threshold because tests

based on the three-regime TAR models reject the null hypothesis of no cointegration,

whereas the EG-t and ES-Φ tests fail to reject the null hypothesis. Thus, we obtained

more stable and reliable results for threshold cointegration.

Figures 1 and 2 draw the time path of the residuals for two samples. Both figures

denote a strong tendency to move back toward equilibrium, although the processes appear

to be highly persistent in the sub sample. In order to confirm these findings and the results

of Table 8, we estimate the following model:

∆ût = ρ1ût−11{ût−1≤λ1} + ρ2ût−11{ût−1>λ2} +
p∑

j=1

αj∆ût−j + εt, (37)

where ût denotes the demeaned residual such that ût = Mt/Pt − δ̂0 − β̂Y Yt − β̂RRt or

ût = Mt/Pt − δ̂0 − β̂Y Yt − β̂rrt. We determined the appropriate lag length for p = 12 and

then excluded the insignificant augmentation terms. The threshold parameter λ = (λ1, λ2)
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is estimated by minimizing the sum of the squared residuals over [λmin, λmax], where

λmin and λmax are set to 5% and 95% quantiles, respectively, of the ordered sample

û(1) < û(2) < . . . < û(T ).

From the estimations presented in Table 9, the middle regime for the double-log model

in the full sample is approximately 15%. This would be the reason why EG-t, ES-Φ, W1,

and W3 in Table 8 rejected the null hypothesis but the tests in the BAND-TAR model

did not. In the case of the semi-log model, we notice that the percentage of the middle

regime for the sub sample is approximately 90%. Furthermore, the adjustment process

toward equilibrium is persistent below the estimated threshold parameter λ̂1, whereas

the deviations from the equilibrium are quickly eliminated above the estimated threshold

parameter λ̂2. We could interpret the results of Tables 8 and 9 from the Monte Carlo

simulations presented in Table 6, where Wald-type tests have a higher power when the

threshold is large, i.e., when the middle regime percentage increases. The reason why

EG-t and ES-Φ tests fail to reject the null hypothesis of no cointegration for the semi-log

model, as demonstrated in the previous section, is that these tests have a low power when

the equilibrium error is the three-regime TAR process with a relatively large percentage

of observations in the middle regime. These findings strongly support the stability of the

long-run money demand characterized by the three-regime TAR model. Accordingly, the

use of the cointegration test in three-regime TAR models provides a better alternative to

standard cointegration tests in the cases where economic theories indicate three-regime

TAR adjustment.

5 Summary

This paper has proposed residual-based tests for cointegration in three-regime TAR mod-

els. We have proposed the Wald-type and t-type statistics, which are the tests for the

null hypothesis of no cointegration against the alternative of cointegration with the three-

regime TAR adjustment, and derived its asymptotic distributions. Since our approach
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does not degenerate with respect to the threshold parameters in the limit, the proposed

tests using supremum statistics have better size properties and do not require bootstrap

to calculate the critical values and, like standard cointegration tests, are convenient and

practical for applied researchers.

Monte Carlo simulations demonstrated that the proposed tests perform better than

the Engle-Granger cointegration test and the two-regime cointegration test introduced

by Enders and Siklos (2001), under cointegration with three-regime TAR adjustment,

particularly when the threshold and sample size increase. When we applied these tests to

the money demand of the U.S., the proposed tests rejected the null of no cointegration

whereas the other tests did not; that is, by allowing for three-regime TAR adjustment, we

obtained results showing the stability of the money demand function. This implies that

the money demand of the U.S. has three-regime TAR adjustment toward equilibrium. The

results obtained from Monte Carlo simulations and the applications to the money demand

of the U.S. underline the usefulness of the proposed tests for applied investigators in cases

where cointegration tests are used in three-regime TAR frameworks.
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Footnotes

1) Park and Shintani (2005) developed unit root tests in various transitional AR models, including

the three-regime TAR model. Maki (2009) reviewed unit root tests in three-regime TAR models

and investigated the power of these models. Other unit root tests in nonlinear frameworks have

also been proposed by Enders and Siklos (1998), Caner and Hansen (2001), and Kapetanios, Shin,

and Snell (2003). Choi and Moh (2007) investigated the power of some unit root tests in nonlinear

frameworks.

2) Enders and Siklos (2001) proposed cointegration tests in two-regime TAR models. Hansen and

Seo (2002) developed the test in two-regime TAR vector error correction models, and Kapetan-

ios, Shin, and Snell (2006) proposed cointegration tests in smooth transition autoregressive models.

3) If (2) is a three-regime TAR model with a symmetric adjustment, the model under the al-

ternative is −1 < φ1 = φ2 < 1. In addition, a special case of a symmetric three-regime TAR model

is given by ut = φut−11{|ut−1|>λ} + et. Since (2) also includes these restricted models, we only

consider general model (2).

4) See Bec et al. (2004) and Kapetanios and Shin (2006) for details on the stationarity condi-

tion of three-regime TAR models.

5) Although it is possible that ∆ût−j also follows a TAR process, for the sake of simplicity, we

do not consider this case as in Enders and Siklos (2001). Even if ∆ût−j is a TAR process, the

asymptotic distribution of the test statistic does not change.

6) It is possible to propose a test that has the null hypothesis of (ρ1 < 0 and ρ2 = 0) or (ρ1 = 0,

ρ2 < 0) and the alternative hypothesis of (ρ1 < 0 and ρ2 < 0). However, as pointed out by Seo

(2006), the parameter space for the test is complicated under the null hypothesis. Therefore, we

introduce the test in the present paper.
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7) Although the intercept parameter in the BAND-TAR model also plays a role in determining the

stationarity of ut, we focus on the AR parameters because the stationarity of the AR parameters

is important for general tests for unit root and cointegration. See Balke and Fomby (1997) for the

returning drift model, where the intercept parameter in the BAND-TAR model determines the

existence of cointegration.

8) Seo (2006) proposed a bootstrap method to improve size distortions.

9) If λ̃1 = λ̃2 = 0 or λ̃1 = λ̃2, the test statistic is found to be similar to the Φ statistic by using

an F statistic of Enders and Siklos (2001), although they did not show the asymptotic distribution.

10) Owing to space constraints, we have not tabulated finite size critical values. These are available

with the author and will be provided on request.

11) See also Balke and Fomby (1997) and Lo and Zivot (2001).

12) Critical values of the ES-Φ test are 6.208, 7.272, and 9.640 at 90%, 95%, and 99%, respectively.
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Appendix

Proof of Theorem 1

From (21), we obtain that T−1/2`−1
11 ût ⇒ W ∗(r). Given that the function 1{ût−1 ≤ λ1} is

continuous in ût−1, using Lemma A2 of Park and Phillips (2001), we have

1{ût−1 ≤ λ1} = 1{T−1/2η̂′zt−1 ≤ T−1/2λ1}

⇒ 1{η′B(r) ≤ λ1T } = 1{W ∗(r) ≤ λ̃1},
(A.1)

where λ1T = T−1/2λ1 and λ̃1 = `−1
11 λ1T . From εt =

∑∞
j=0 Djξ

′
t−jη = D(L)ξ′tη and Lemma 2.1 of

Phillips and Ouliaris (1990), we have

T−1/2

[Tr]∑
t=1

εt ⇒ D(1)η′B(r), (A.2)

where D(1) =
∑∞

j=0 Dj . (A.1), (A.2), and the continuous mapping theorem (CMT) yield

T−1
T∑

t=1

ût−11{ût−1 ≤ λ1}εt = T−1/2η̂′
T∑

t=1

T−1/2zt−11{T−1/2η̂′zt−1 ≤ T−1/2λ1}D(L)ξ′tη̂

⇒ D(1)η′
∫ 1

0

BdB′η1{η′B ≤ λ1T }

= D(1)`211

∫ 1

0

1{W ∗ ≤ λ̃1}W ∗dW ∗

(A.3)

and

T−2
T∑

t=1

û2
t−11{ût−1 ≤ λ1} = T−1

T∑
t=1

(T−1/2z′t−1η)′(T−1/2z′t−1η)1{T−1/2η̂′zt−1 ≤ T−1/2λ1}

⇒ η′
∫ 1

0

BB′η1{η′B ≤ λ1T }

= `211

∫ 1

0

1{W ∗ ≤ λ̃1}W ∗2.

(A.4)

A similar type of analysis can be applied to the term for 1{ût−1 > λ2}. Therefore, it can be also

shown that

T−1
T∑

t=1

ût−11{ût−1 > λ2}εt ⇒ D(1)`211

∫ 1

0

1{W ∗ > λ̃2}W ∗dW ∗ (A.5)
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and

T−2
T∑

t=1

û2
t−11{ût−1 > λ2} ⇒ `211

∫ 1

0

1{W ∗ > λ̃2}W ∗2. (A.6)

Proof of Theorem 2

Part of (2a). The statistic WT (λ) can be written as

WT (λ) =
1
σ̂2

ρ̂′(U′QpU)ρ̂, (A.7)

where

U =



û01{û0 ≤ λ1} û01{û0 > λ2}

û11{û1 ≤ λ1} û11{û1 > λ2}
...

...

ûT−11{ûT−1 ≤ λ1} ûT−11{ûT−1 > λ2}


and Qp = I−Mp(M′

pMp)−1M′
p is a T × T idempotent matrix. Mp is the matrix of observations

on ∆ûp
t−p. Since under H0 with ρ1 = ρ2 = 0, ρ̂ is given by ρ̂ = (U′QpU)−1U′Qpε, where

ε = (ε1, · · · , εT )′, (A.7) is expressed by

WT (λ) =
1
σ̂2

ε′QpU(U′QpU)−1U′Qpε. (A.8)

Let U1 = (û01{û0 ≤ λ1}, · · · , ûT−11{ûT−1 ≤ λ1})′ and U2 = (û01{û0 > λ2}, · · · , ûT−11{ûT−1 >

λ2})′. From the orthogonality between 1{ût−1 ≤ λ1} and 1{ût−1 > λ2}, we can decompose (A.8)

as

WT (λ) = (ε′QpU1, ε
′QpU2)

U′
1QpU1 0

0 U′
2QpU2


−1 U′

1Qpε

U′
2Qpε


=

1
σ̂2

{ε′QpU1(U′
1QpU1)−1U′

1Qpε + ε′QpU2(U′
2QpU2)−1U′

2Qpε}.

(A.9)

Consider ε′QpU1(U′
1QpU1)−1U′

1Qpε. It follows from CMT that T−1U′
1Mp = Op(1), T−1M′

pMp =

Op(1), and T−1/2M′
pε = Op(1). Combining these results and Theorem 1, we have

T−1U′
1Qpε = T−1U′

1ε − T−1/2 · T−1U′
1Mp(T−1M′

pMp)−1T−1/2M′
pε

= T−1U′
1ε + op(1) ⇒ D(1)`211

∫ 1

0

1{W ∗ ≤ λ̃1}W ∗dW ∗
(A.10)
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and

T−2U′
1QpU1 = T−2U′

1U1 − T−1 · T−1U′
1Mp(T−1M′

pMp)−1T−1M′
pU1

= T−2U′
1U1 + op(1) ⇒ `211

∫ 1

0

1{W ∗ ≤ λ̃1}W ∗2.

(A.11)

Similarly, it can be shown that

T−1U′
2Qpε = T−1U′

2ε + op(1) ⇒ D(1)`211

∫ 1

0

1{W ∗ > λ̃2}W ∗dW ∗ (A.12)

and

T−2U′
2QpU2 = T−2U′

2U2 + op(1) ⇒ `211

∫ 1

0

1{W ∗ > λ̃2}W ∗2. (A.13)

Next, we consider the variance σ̂2. Note that ρ̂1 = Op(T−1), ρ̂2 = Op(T−1), and (α̂j − αj) =

Op(T−1/2). Then, using Lemma 2.2 of Phillips and Ouliaris (1990), we obtain

σ̂2 = T−1
T∑

t=1

(
∆ût − ρ̂1ût−11{ût−1 ≤ λ1} − ρ̂2ût−11{ût−1 > λ2} −

∑p
j=1(α̂j − αj)∆ût−j

)2

= T−1
T∑

t=1

ε2t + op(1) = T−1
T∑

t=1

D(L)2η̂′ξ′tξtη̂
′

⇒ D(1)2η′Ωη = D(1)2`211k
′k.

(A.14)

Therefore, by (A.10) − (A.14),

WT (λ) =
1
σ̂2

{T−1ε′U1(T−2U′
1U1)−1T−1U′

1ε + T−1ε′U2(T−2U′
2U2)−1T−1U′

2ε} + op(1)

⇒ 1
D(1)2`211k′k

[(
D(1)`211

∫ 1

0
1{W ∗ ≤ λ̃1}W ∗dW ∗

)2

`211
∫ 1

0
1{W ∗ ≤ λ̃1}W ∗2

+

(
D(1)`211

∫ 1

0
1{W ∗ > λ̃2}W ∗dW ∗

)2

`211
∫ 1

0
1{W ∗ > λ̃2}W ∗2

]

=

( ∫ 1

0
1{W ∗ ≤ λ̃1}W ∗dW ∗

)2

(k′k)
∫ 1

0
1{W ∗ ≤ λ̃1}W ∗2

+

( ∫ 1

0
1{W ∗ > λ̃2}W ∗dW ∗

)2

(k′k)
∫ 1

0
1{W ∗ > λ̃2}W ∗2

.

(A.15)

We can deduce the required results from the asymptotic distribution of WT (λ) and Assumption 2.

Under the alternative hypothesis, WT (λ) can be written as

WT (λ) =
1
σ̂2

ρ′(U′QpU)ρ +
1
σ̂2

ε′QpU(U′QpU)−1U′Qpε. (A.16)
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Note that under the alternative hypothesis, T−1U′QpU = Op(1), T−1/2U′Qpε = Op(1), and

σ̂2 = Op(1). We can see that

WT (λ) = T
1
σ̂2

ρ′(T−1U′QpU)ρ +
1
σ̂2

T−1/2ε′QpU(T−1U′QpU)−1T−1/2U′Qpε

= T
1
σ̂2

ρ′(T−1U′QpU)ρ + Op(1)

= Op(T ).

(A.17)

Therefore, WT (λ) diverges to infinity as T → ∞. This also implies that the test statistic diverges

to infinity as T → ∞.

Part of (2b). From the proof of part (2a), the statistic tT (λ)max can be written as

tT (λ)max = max

[
ρ̂1

{σ̂2(U′
1QpU1)−1}1/2

,
ρ̂2

{σ̂2(U′
2QpU2)−1}1/2

]
. (A.18)

Since ρ̂i (i = 1, 2) is given by ρ̂i = (U′
iQpUi)−1U′

iQpε under H0 with ρ1 = ρ2 = 0, tT (λ)max is

expressed as

tT (λ)max = max

[
U′

1Qpε

{σ̂2(U′
1QpU1)}1/2

,
U′

2Qpε

{σ̂2(U′
2QpU2)}1/2

]
. (A.19)

Using from (A.9) to (A.13), we have

t(λ)max ⇒ max

[
D(1)`211

∫ 1

0
1{W ∗ ≤ λ̃1}W ∗dW ∗(

D(1)2`211k′k`211
∫ 1

0
1{W ∗ ≤ λ̃1}W ∗2

)1/2
,

D(1)`211
∫ 1

0
1{W ∗ > λ̃2}W ∗dW ∗(

D(1)2`211k′k`211
∫ 1

0
1{W ∗ > λ̃2}W ∗2

)1/2

]

= max

[ ∫ 1

0
1{W ∗ ≤ λ̃1}W ∗dW ∗(

k′k
∫ 1

0
1{W ∗ ≤ λ̃1}W ∗2

)1/2
,

∫ 1

0
1{W ∗ > λ̃2}W ∗dW ∗(

k′k
∫ 1

0
1{W ∗ > λ̃2}W ∗2

)1/2

]
.

(A.20)

We can deduce the required results from the asymptotic distribution of tT (λ)max and Assumption

2. Next, we consider the properties of the test statistic under the alternative hypothesis. Under

the alternative hypothesis, tT (λ)max can be written as

tT (λ)max =max

[
ρ1

{σ̂2(U′
1QpU1)−1}1/2

+
1
σ̂
U′

1Qpε(U′
1QpU1)−1/2,

ρ2

{σ̂2(U′
2QpU2)−1}1/2

+
1
σ̂
U′

2Qpε(U′
2QpU2)−1/2

]
.

(A.21)
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Then, we have

tT (λ)max =max

[
T 1/2ρ1

{σ̂2(T−1U′
1QpU1)−1}1/2

+
1
σ̂

T−1/2U′
1Qpε(T−1U′

1QpU1)−1/2,

T 1/2ρ2

{σ̂2(T−1U′
2QpU2)−1}1/2

+
1
σ̂

T−1/2U′
2Qpε(T−1U′

2QpU2)−1/2

]

=max[Op(T 1/2), Op(T 1/2)].

(A.22)

from T−1U′
1QpU1 = Op(1), T−1/2U′

1Qpε = Op(1), T−1U′
2QpU2 = Op(1), T−1/2U′

2Qpε = Op(1),

and σ̂2 = Op(1). Therefore, tT (λ)max diverges to minus infinity as T → ∞. This also implies that

the test statistic diverges to minus infinity under the alternative hypothesis as T → ∞.

Proof of Theorem 3

Part of (3a).

Under H0, ρ̂ is given by ρ̂ = (U′SpU)−1U′Spε, where Sp = I − Np(N′
pNp)−1N′

p is a T × T

idempotent matrix and

Np =



1{û0 ≤ λ1} 1{û0 > λ2} ∆ûp
1−p

1{û1 ≤ λ1} 1{û1 > λ2} ∆ûp
2−p

...
...

...

1{ûT−1 ≤ λ1} 1{ûT−1 > λ2} ∆ûp
T−p


.

Similar to (A.9), we can rewrite WB
T (λ) as

WB
T (λ) =

1
σ̂2

{ε′SpU1(U′
1SpU1)−1U′

1Spε + ε′SpU2(U′
2SpU2)−1U′

2Spε}. (A.23)

Note that

T−1U′
1Spε = T−1U′

1ε − T−3/2U′
1Np(T−1N′

pNp)−1T−1/2N′
pε. (A.24)

Consider (T−1NpNp)−1. Since we obtain T−1
∑T

t=1 1{ût−1 ≤ λ1} ⇒
∫ 1

0
1{W (r)∗ ≤ λ̃1}dr from

Theorem 3.1 of Park and Phillips (2001), it can be shown that

T−1N′
pNp ⇒


∫ 1

0
I1dr 0 0

0
∫ 1

0
I2dr 0

0 0 Γ

 ,
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where I1 = 1{W (r)∗ ≤ λ̃1}, I2 = 1{W (r)∗ > λ̃2}, and Γ = limT→∞ T−1
∑

E(∆ûp′
t−p∆ûp

t−p).

Therefore, we have

(T−1N′
pNp)−1 ⇒


(
∫ 1

0
I1dr)−1 0 0

0 (
∫ 1

0
I2dr)−1 0

0 0 Γ−1

 . (A.25)

We also have

T−3/2U′
1Np = T−3/2(

∑
ût−11{ût−1 ≤ λ1}, 0,

∑
ût−11{ût−1 ≤ λ1}∆ûp

t−p)

⇒ (`11
∫ 1

0
W ∗I1, 0, 0),

(A.26)

and

T−1/2N′
pε = T−1/2(

∑
1{ût−1 ≤ λ1}εt,

∑
1{ût−1 > λ2}εt,

∑
∆ûp

t−pεt)′

⇒ (D(1)`11
∫ 1

0
I1dW ∗, D(1)`11

∫ 1

0
I2dW ∗, Op(1))′.

(A.27)

It follows from Theorem 1, (A.25), (A.26), and (A.27) that

T−1U′
1Spε ⇒ D(1)`211

∫ 1

0
I1W

∗dW ∗ − D(1)`211
∫ 1

0
W ∗I1(

∫ 1

0
I1)−1

∫ 1

0
I1dW ∗

= D(1)`211{
∫ 1

0
I1

∫ 1

0
I1W

∗dW ∗ −
∫ 1

0
W ∗I1

∫ 1

0
I1dW ∗}.

(A.28)

Next, consider U′
1SpU1. It is easily seen that

T−2U′
1SpU1 = T−2U′

1U1 − T−3/2U′
1Np(T−1N′

pNp)−1T−3/2N′
pU1. (A.29)

Using (A.25) and (A.26), we obtain

−T−3/2U′
1Np(T−1N′

pNp)−1T−3/2N′
pU1 ⇒ `211(

∫ 1

0
W ∗I1)2(

∫ 1

0
I1)−1. (A.30)

Therefore, we have

T−2U′
1SpU1 ⇒ `211

∫ 1

0
W ∗2I1 − `211(

∫ 1

0
W ∗I1)2(

∫ 1

0
I1)−1

= `211{
∫ 1

0
I1

∫ 1

0
W ∗2I1 − (

∫ 1

0
W ∗I1)2}.

(A.31)

Since similar analysis can be applied to ε′SpU2(U′
2SpU2)−1U′

2Spε, it can also be shown that

T−1U′
2Spε ⇒ D(1)`211{

∫ 1

0
I2

∫ 1

0
I2W

∗dW ∗ −
∫ 1

0
W ∗I2

∫ 1

0
I2dW ∗} (A.32)
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and

T−2U′
2SpU2 ⇒ `211{

∫ 1

0
I2

∫ 1

0
W ∗2I2 − (

∫ 1

0
W ∗I2)2}. (A.33)

Noting that (µ̂1 − µ1) = Op(T−1/2) and (µ̂2 − µ2) = Op(T−1/2), similar to (A.14), we obtain

σ̂2 = T−1
T∑

t=1

{
∆ût − (µ̂1 − µ1 + ρ̂1)ût−11{ût−1 ≤ λ1} − (µ̂2 − µ2 + ρ̂2)ût−11{ût−1 > λ2}

−
∑p

j=1(α̂j − αj)∆ût−j

}2

= T−1
T∑

t=1

ε2t + op(1) ⇒ D(1)2`211k
′k.

(A.34)

Therefore, by (A.28) − (A.34),

WB
T (λ) ⇒ 1

D(1)2`211k′k

[{
D(1)`211(

∫ 1

0
I1

∫ 1

0
I1W

∗dW ∗ −
∫ 1

0
W ∗I1

∫ 1

0
I1dW ∗)

}2

`211{
∫ 1

0
I1

∫ 1

0
W ∗2I1 − (

∫ 1

0
W ∗I1)2}

+

{
D(1)`211(

∫ 1

0
I2

∫ 1

0
I2W

∗dW ∗ −
∫ 1

0
W ∗I2

∫ 1

0
I2dW ∗)

}2

`211{
∫ 1

0
I2

∫ 1

0
I2W

∗2dW ∗ − (
∫ 1

0
W ∗I2)2}

]

=
1

k′k

( ∫ 1

0
I1

∫ 1

0
W ∗I1 −

∫ 1

0
W ∗I1

∫ 1

0
I1dW ∗

)2

∫ 1

0
I1

∫ 1

0
W ∗2I1 − (

∫ 1

0
W ∗I1)2

+
1

k′k

( ∫ 1

0
I2

∫ 1

0
W ∗I2 −

∫ 1

0
W ∗I2

∫ 1

0
I2dW ∗

)2

∫ 1

0
I2

∫ 1

0
W ∗2I2 − (

∫ 1

0
W ∗I2)2

.

(A.35)

We can deduce the required results from the asymptotic distribution of WT
B (λ) and Assumption 2.

Under the alternative hypothesis, we can write WB
T (λ) as

WB
T (λ) =

1
σ̂2

ρ′(U′SpU)ρ +
1
σ̂2

ε′SpU(U′SpU)−1U′Spε. (A.36)

Since under the alternative hypothesis, we have T−1U′SpU = Op(1), T−1/2U′Spε = Op(1), and

σ̂2 = Op(1), it can be shown that

WB
T (λ) = T

1
σ̂2

ρ′(T−1U′SpU)ρ +
1
σ̂2

T−1/2ε′SpU(T−1U′SpU)−1T−1/2U′Spε

= T
1
σ̂2

ρ′(T−1U′SpU)ρ + Op(1)

= Op(T ).

(A.37)
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Therefore, WB
T (λ) diverges to infinity as T → ∞. This also implies that the test statistic diverges

to infinity as T → ∞.

Part of (3b). From the proof of part (2b) and (3a), under H0, the statistic tBT (λ)max can be

written as

tBT (λ)max = max

[
U′

1Spε

{σ̂2(U′
1SpU1)}1/2

,
U′

2Spε

{σ̂2(U′
2SpU2)}1/2

]
. (A.38)

Using from (A.28) to (A.34), we have

tB(λ)max =max

[ ∫ 1

0
I1

∫ 1

0
I1W

∗dW ∗ −
∫ 1

0
W ∗I1

∫ 1

0
I1dW ∗(

k′k
{ ∫ 1

0
I1

∫ 1

0
W ∗2I1 − (

∫ 1

0
W ∗2I1)2

})1/2
,

∫ 1

0
I2

∫ 1

0
I2W

∗dW ∗ −
∫ 1

0
W ∗I2

∫ 1

0
I2dW ∗(

k′k
{ ∫ 1

0
I2

∫ 1

0
W ∗2I2 − (

∫ 1

0
W ∗2I2)2

})1/2

] (A.39)

We can deduce the required results from the asymptotic distribution of tBT (λ)max and Assumption

2. Next, we consider the properties of the test statistic under the alternative hypothesis. Under

the alternative hypothesis, tBT (λ)max can be expressed as

tBT (λ)max = max

[
ρ1

{σ̂2(U′
1SpU1)−1}1/2

+
1
σ̂
U′

1Spε(U′
1SpU1)−1/2,

ρ2

{σ̂2(U′
2SpU2)−1}1/2

+
1
σ̂
U′

2Spε(U′
2SpU2)−1/2

]
.

(A.40)

Using T−1U′
1SpU1 = Op(1), T−1/2U′

1Spε = Op(1), T−1U′
2SpU2 = Op(1), T−1/2U′

2Spε = Op1,

and σ̂2 = Op(1), we obtain

tBT (λ)max =max

[
T 1/2ρ1

{σ̂2(T−1U′
1SpU1)−1}1/2

+
1
σ̂

T−1/2U′
1Spε(T−1U′

1SpU1)−1/2,

T 1/2ρ2

{σ̂2(T−1U′
2SpU2)−1}1/2

+
1
σ̂

T−1/2U′
2Spε(T−1U′

2SpU2)−1/2

]

=max[Op(T 1/2), Op(T 1/2)],

(A.41)

which shows that tBT (λ)max diverges to minus infinity as T → ∞. This also implies that the test

statistic diverges to minus infinity under the alternative hypothesis as T → ∞.
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Table 8: Empirical results for money demand

EG-t ES-Φ W1 t1 W3 t3 WB1 tB1 WB3 tB3

Double-log model
1960:1-2008:1 5% 5% 5% 10% 5% 5% - - - -

1979:10-2008:1 10% 10% 10% 5% - - 10% 10% - -

Semi-log model
1960:1-2008:1 - - - - - - 1% - - -

1979:10-2008:1 - - 1% - - - 1% 5% 1% 5%

1%, 5%, and 10% indicate that the null hypothesis of no cointegration is rejected at the 1%, 5%,
and 10% significance levels, respectively.

Table 9: TAR estimates

ρ̂1 ρ̂2 λ̂1 λ̂2 σ̂ Middle regime%

Double-log model
1960:1-2008:1 -0.077(0.019) -0.036(0.012) -0.012 0.009 0.012 14.55

1979:10-2008:1 -0.087(0.029) -0.085(0.026) -0.044 0.055 0.008 84.86

Semi-log model
1960:1-2008:1 -0.042(0.027) -0.099(0.026) -0.103 0.122 0.016 90.12

1979:10-2008:1 -0.050(0.024) -0.165(0.034) -0.048 0.054 0.009 86.64

The standard errors are given within parentheses. σ̂ shows the estimate of the standard deviation
of the error term. Middle regime % denotes the percentage of observations in the middle regime.
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Figure 1: Residuals of the double-log model(−−−: the estimated thresholds)

1960:1-2008:1 1979:10-2008:1

Figure 2: Residuals of the semi-log model(−−−: the estimated thresholds)

1960:1-2008:1 1979:10-2008:1
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